Гистидин в продуктах питания. Гистидин: формула, химические реакции Что бывает при недостатке гистидина

Гистиди́н (L-α-амино-β-имидазолилпропионовая кислота ) - гетероциклическая альфа-аминокислота , одна из 20 протеиногенных аминокислот. Является одной из двух условно-незаменимых аминокислот (наряду с аргинином). Незаменимой является только для детей.

Общие
Систематическое
наименование
L-2-амино-3-(1H-имидазол-
4-ил) пропановая кислота
Сокращения Гис, His, H
CAU,CAC
Хим. формула C₆H₉N₃O₂
Рац. формула C 6 H 9 N 3 O 2
Физические свойства
Молярная масса 155,16 г/моль
Термические свойства
Т. плав. 287 °C
Химические свойства
pK a 1,70
6,04
9,09
Классификация
Рег. номер CAS 71-00-1 (L-гистидин)
351-50-8 (D-гистидин)
4998-57-6 (DL-гистидин)
PubChem
Рег. номер EINECS 200-745-3
SMILES
InChI
ChEBI
ChemSpider
Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Гистидин растворим в воде, ограниченно растворим в этаноле, не растворим в эфире.

Химические свойства

Гистидин - ароматическая альфа-аминокислота со слабыми основными свойствами, обусловленными присутствием в молекуле остатка имидазола . Образует окрашенные продукты в биуретовой реакции и с диазотированной сульфаниловой кислотой (реакция Паули), что используется для количественного определения гистидина. Вместе с лизином и аргинином гистидин образует группу осно́вных аминокислот. Образует бесцветные кристаллы.

Гистидином богаты такие продукты как тунец, лосось, свиная вырезка, говяжье филе, куриные грудки, соевые бобы, арахис, чечевица. Кроме того, гистидин включается в состав многих витаминных комплексов и некоторых иных медикаментов.

Роль в организме

Остаток гистидина входит в состав активных центров множества ферментов. Гистидин является предшественником в биосинтезе гистамина . Одна из незаменимых аминокислот, способствует росту и восстановлению тканей. В большом количестве содержится в

Реакция декарбоксилирования гистидина имеет большое физиологическое значение, так как является источником образования биологически активного вещества - гистамина , который играет важную роль в процессе воспаления и развития некоторых аллергических реакций .

Декарбоксилирование происходит большей частью в тучных клетках соединительной ткани практически всех органов. Эта реакция протекает при участии фермента гистидиндекарбоксилазы.

Известно связанное с дефектом гистидиназы наследственное заболевание гистидинемия, при котором характерно повышенное содержание гистидина в тканях и задержка умственного и физического развития.

Брутто-формула

C 6 H 9 N 3 O 2

Фармакологическая группа вещества Гистидин

Нозологическая классификация (МКБ-10)

Код CAS

71-00-1

Характеристика вещества Гистидин

Прозрачные бесцветные кристаллы или белый кристаллический порошок слабокислого вкуса. Растворим в воде, очень мало - в этаноле.

Фармакология

Фармакологическое действие - гиполипидемическое, антиатеросклеротическое .

Незаменимая аминокислота. В организме подвергается декарбоксилированию с образованием гистамина. Вызывает спазм гладкой мускулатуры бронхов и ЖКТ , расширение капилляров, застой крови в капиллярах и увеличение проницаемости их стенок, отек окружающих тканей, снижение АД . Рефлекторно возбуждает мозговое вещество надпочечников, способствует выделению эпинефрина, сужению артериол, учащению сердечных сокращений.

Имеются данные о влиянии на секрецию желудочного сока и возможности использования в комплексной терапии язвенной болезни желудка и двенадцатиперстной кишки.

Применение вещества Гистидин

Гепатит, атеросклероз (комплексная терапия).

Противопоказания

Гиперчувствительность, бронхиальная астма, артериальная гипотензия, органические заболевания ЦНС .

Превращающаяся в организме в процессе декарбоксилирования в гистамин
Гистидин (сокращенно His или H) представляет собой альфа-аминокислоту с имидазольной функциональной группой. Эта является одной из 22 протеиногенных аминокислот. Она обозначается кодонами CAU и CAC. Гистидин был открыт немецким врачом Косселем Альбрехтом в 1896 году. Гистидин является незаменимой для человека и других млекопитающих . Изначально полагалось, что эта незаменима только для младенцев, однако в ходе долгосрочных исследований было установлено, что она также важна и для взрослых людей.

Химические свойства

Имидазольная боковая цепь гистидина имеет рКа (отрицательный десятичный логарифм константы диссоциации) около 6,0, а в целом имеет рКа 6,5. Это означает, что при физиологически соответствующих значениях рН, относительно небольшие изменения в рН могут изменять средний заряд цепи. При рН ниже 6 имидазольное кольцо является в основном протонированным, как в уравнении Хендерсона-Хассельблаха. При протонировании кольцо имидазола имеет две NH связи и положительный заряд. Положительный заряд равномерно распределяется между двумя атомами азота.

Ароматизированность

Кольцо имидазола у гистидина является ароматическим при всех значениях рН. Оно содержит шесть пи-электронов: четыре из двух двойных связей, и два из пары азота. Оно может формировать пи-связи, однако это осложняется его положительным зарядом. При 280 нм оно не способно поглощать, однако в нижней части УФ-диапазона оно поглощает даже больше, чем некоторые .

Биохимия

Имидазольная боковая цепь гистидина является общим координирующим лигандом в металлопротеинах и частью каталитических центров у определенных ферментов. В каталитических триадах основный азот гистидина используется для получения протона из , треонина или , и активации его в качестве нуклеофила. Гистидин используется для быстрого трансфера протонов, абстрагируя протон с его основным азотом, и создавая положительно заряженные промежуточные вещества, а затем используя другую молекулу, буфер, чтобы извлечь протон из азотной кислоты. В карбоангидразе гистидинный протонный трансфер используется для быстрого транспортирования протонов из цинк-связанной молекулы воды, чтобы быстро регенерировать активные формы фермента. Гистидин также присутствует в гемоглобиновых спиралях Е и F. Гистидин помогает стабилизировать оксигемоглобин и дестабилизировать CO-связанный гемоглобин. В результате, в гемоглобине связывание окиси углерода сильнее только лишь в 200 раз, по сравнению с 20 000 раз в свободной геме.
Некоторые могут быть превращены в промежуточные соединения в цикле Кребса. Углероды из четырех групп аминокислот образуют промежуточные вещества цикла – альфа-кетоглютарат (альфа-КТ), сукцинил-КоА, фумарат и оксалоацетат. , образующие альфа-КГ - глутамат, глутамин, пролин, и гистидин. Гистидин преобразуется в формиминоглютамат (FIGLU). Формимино группа передается в тетрагидрофолат, а оставшиеся пять атомов углерода образуют глутамат. Глутамат может быть дезаминирован глутаматдегидрогеназой или подвергаться трансаминированию, формируя альфа-КГ.

ЯМР (ядерный магнитный резонанс)

Как и ожидалось, 15N химические сдвиги этих атомов азота неразличимы (около 200 частей на миллион по отношению к азотной кислоте по шкале сигма, на которой увеличение экранирования соответствует увеличению химического сдвига). Поскольку рН возрастает приблизительно до 8, теряется протонирование имидазольного кольца. Оставшийся протон теперь нейтрального имидазола может существовать в виде азота, что приводит к возникновению Н-1 или Н-3 таутомеров. ЯМР показывает, что химический сдвиг N-1 незначительно падает, в то время как химический сдвиг N-3 падает значительно (около 190 против 145 промилле). Это означает, что N-1-H таутомер является более предпочтительным, благодаря образованию водородных связей с соседним аммонием. Защита N-3 существенно снижается за счет парамагнитного эффекта второго порядка, который включает в себя симметричное взаимодействие между неподеленной парой азота и возбужденными пи* состояниями ароматического кольца. Когда рН поднимается выше 9, химические сдвиги N-1 и N-3 становятся равными примерно 185 и 170 частей на миллион. Стоит отметить, что депротонированная форма имидазола, имидазолат ион, формируется только при значениях рН выше 14, и, следовательно, не является физиологически значимой. Это изменение химического сдвига может быть объяснено видимым снижением водородных связей амина на ионе аммония, и благоприятной водородной связью между карбоксилатом и NH. Это должно послужить снижению предпочтения N-1-H таутомера.

Метаболизм

Является предшественником гистамина и биосинтеза карнозина.
Фермент гистидин аммиак-лиазы преобразует гистидин в аммиак и уроканиновую кислоту. Недостаток этого фермента наблюдается при редком метаболическом расстройстве гистидинемии. В антинобактерии и нитчатых грибах, таких как Neurospora сrаssа, гистидин может быть преобразован в антиоксидант эрготионеин.

Гистидин в продуктах

Гистидином богаты такие продукты как тунец, лосось, свиная вырезка, говяжье филе, куриные грудки, соевые бобы, арахис, чечевица.

Добавки Гистидина

Было показано, что добавки гистидина вызывают быстрое выделение цинка у крыс при увеличении скорости экскреции от 3 до 6 раз.

(бета-имидазолил-альфа-аминопропионовая кислота, C 6 H 9 N 3 O 2) - гетероциклическая аминокислота с преобладанием основных свойств, содержится почти во всех белках.

Структурная формула:

В крови и тканях человека и животных, в растительных организмах находится в составе белков, а также в свободном виде и в виде некоторых производных, гл. обр. пептидов - карнозина (см.) и ансерина (см.). В плазме крови человека содержится ок. 1,7 мг% Г.; в довольно больших количествах (св. 100 мг в сутки) Г. выделяется с мочой (содержание Г. в крови и выделение его с мочой повышаются при беременности). Хотя необходимость присутствия Г. в пище человека не доказана и его относят к заменимым аминокислотам, он не заменим в питании крыс, собак, мышей, кур и многих других животных. В Neurospora crassa и других грибах содержится бетаин Г.- герцинин и его тиоловое производное эрготионеин (см. Бетаины). Эти соединения обнаружены также в крови человека и ряда животных, однако они, по-видимому, не синтезируются в животном организме и попадают в него с пищей.

Г. впервые был получен А. Косселем в 1896 г. из гидролизата протамина осетра - стурина и в том же году Гедином (S. Hedin)- из гидро-лизата казеина. Г. может быть получен и из гидролизатов других белков. Много Г. содержит глобин (белковая часть гемоглобина), благодаря чему богатым источником для получения Г. служит кровь.

Г. кристаллизуется в виде бесцветных пластинок, хорошо растворим в воде, плохо - в спирте, нерастворим в эфире и хлороформе, t°пл 277° (с разложением). Изоэлектрическая точка Г. находится при pH 7,6. Природный L-гистидин, [a] 20 D -39,3, имеет слегка горьковатый вкус.

Гистидин как препарат

Histidinum выпускается в виде гистидина гидрохлорида (Histidini hydrochloridum; син.: Cloristin, Gerulcin, Herulcin, Histifan, Laristin, Laristidin, Stellidin, Ulcostidine). Хорошо растворим в воде. Быстро всасывается при любом способе введения.

Г. несколько повышает секреторную и моторную функцию жел.-киш. тракта, что, вероятно, связано с образованием из Г. гистамина. Г. обнаруживает свойства адаптогена: при высоком содержании в пище уменьшает отрицательное влияние на животных высокой температуры, пониженного атмосферного давления, ионизирующей радиации; одновременно повышается активность ферментов, участвующих в метаболизме Г.

Применяют Г. для лечения при гепатитах, хрон, гастритах с повышенной кислотностью, при язвенной болезни желудка и двенадцатиперстной кишки. Вводят внутримышечно по 5 мл 4% р-ра ежедневно. Курс лечения 20-30 инъекций, после чего назначают по 5-6 инъекций каждые 2-3 мес. Г. улучшает самочувствие, сон, устраняет болевой синдром и диспептические явления; у значительной части больных наблюдается регенерация слизистой оболочки желудка или рубцевание язвы. При паренхиматозном гепатите аналогичный курс лечения ускоряет выздоровление, быстрее нормализует пигменто-, протромбинообразовательную и синтетическую функции печени. Г. используют в комплексном противоревматическом лечении. У больных атеросклерозом Г. улучшает показатели липидного обмена. Побочного действия препараты Г. обычно не оказывают. Изредка возникают быстро проходящая слабость, бледность, боли в подложечной области.

Форма выпуска: ампулы по 5 мл 4% р-ра; сохраняют в защищенном от света месте.

Библиография Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; Визир А. Д. Применение гистидина при атеросклерозе, Врач, дело, № 7, с. 129, 1964; Майстер А. Биохимия аминокислот, пер. с англ., М., 1961; Мардашев G. Р. Биохимические проблемы медицины, с. 109, М., 1975; Шелыгина H. М. Влияние гистидина на показатели сосудистой проницаемости при ревматизме, Казанск. мед. журн., № 4, с. 19, 1968; В го qui st H. P. a. T г u p i n J. S. Amino acid metabolism, Ann. Rev. Biochem., v. 35, p. 231, 1966, bibliogr.; Histidine, Meth. Enzymol., v. 17B, Sect. 1, p. 1, N. Y. - L., 1971; Meister A. Biochemistry of the amino acids, v. 1 - 2, N. Y. - L., 1965; Truff a-Bachi P. a. Cohen G. N. Amino acid metabolism, Ann. Bev. Biochem., v. 42, p. 113, 1973, bibliogr.

И. Б. ЗбарекиЙ; И. В. Комиссаров (фарм.).

В организме человека она синтезируется в количестве, недостаточном для обеспечения нормальной жизнедеятельности, поэтому обязательно должна поступать с пищей. Для детей данная аминокислота является незаменимой.

Аминокислота гистидин входит в состав белков, поэтому называется протеиногенной. Она необходима для роста и развития всех органов и тканей, играет важную роль в синтезе гемоглобина – переносчика кислорода в крови, входит в активный центр многих ферментов, является предшественников важных соединений: гистамина, карнозина, ансерина.

Гистидин – гетероциклическая диаминомонокарбоновая аминокислота.

Молекула гистидина имеет один карбоксильный кислотный хвост, и две аминные головы, одна из которых включена в циклическое соединение. Имея две аминные головы, аминокислота обладает основными свойствами, т.е. в водном растворе сдвигает водородный показатель (рН) в щелочную сторону (>7). Аминокислота обладает высокогидрофильными свойствами, т.е. хорошо растворяется в воде. В глобулярных белках располагается преимущественно на поверхности.

Гистидин называют суперкатализатором по его значению в ферментативном катализе, т.к. он входит в активный центр многих ферментов.

Биологическая потребность .

Суточная потребность в гистидине составляет для взрослого человека 1,5-2 г., для грудных детей: 34 мг\кг. веса, т.е. 0,1 – 0,2 г.

Биосинтез гистидина

Биосинтез гистидина очень сложен, это каскад из 9 реакций, неудивительно, что организм предпочитает получить аминокислоту в готовом виде. Начальными соединениями для синтеза гистамина выступают: аденозин-трифосфорная кислота (АТФ) и 5-фосфорибозил-1-пирофосфат (ФРПФ).

АТФ – это та горючка, на которой работает организм, соединение, поставляющее энергию. Она имеет сложное строение и состоит из пуринового основания аденина, пятичленного сахара рибозы и трех хвостов – остатков фосфорной кислоты.

5-фосфорибозил-1пирофосфат (ФРПФ) – соединение, образующееся из рибозо-5-фосфата, пятичленного сахара рибозы с присоединенным хвостом фосфорной кислоты. Рибоза-5-фосфат образуется, как конечный продукт пентозо-фосфатного цикла, каскада реакций превращения глюкозы – обычного сахара.

Рибозо-5-фосфат присоединяет к себе два фосфорных хвоста из молекулы АТФ и превращается в необходимый для синтеза гистидина 5-фосфорибозил-1-пирофосфат (ФРПФ). Таким образом, начальными продуктами синтеза являются: сахар глюкоза и 2 молекулы АТФ.

Синтез молекулы гистидина начался. Конвейер заработал. К молекуле 5-фосфорибозил -1- пирофосфата (ФРПФ) присоединяется молекула АТФ.

При этом от молекулы ФРПФ отрывается пирофосфатный хвост, а пуриновое ядро азотистого основания АТФ присоединяется к углероду пятичленного сахара рибозы в молекуле ФРПФ.

На втором этапе от образовавшегося монстра отщепляются еще два фосфорных остатка, которые на начальном этапе принадлежали АТФ.

Образуется соединение фосфорибозилАМФ.

Третий этап. Гидролиз, т.е. присоединение воды к пуриновому ядру, принадлежащему изначально молекуле АТФ. Углеродное кольцо разрывается, кислород воды присоединяется к углероду, а пара водородов отходит к соседним азотам, каждому по водороду, чтобы никому обидно не было.

Четвертый этап. Кольцо пятичленного сахара рибозы размыкается, колечко рибозы разворачивается, при этом отщепляется молекула воды.

На пятом этапе происходит метаморфоза. В реакцию вступает глутамин , который отдает азотистый остаток, а забирает гидроксильный остаток — ОН, превращаясь в глутаминовую кислоту (глутамат) .

Глутаминовая кислота и глутамин – два соединения, постоянно обменивающиеся азотными головами. Аммиак, образующийся при работе, захватывается глутаминовой кислотой, которая превращается в глутамин – транспортную форму переноса азотистой группы. Глутамин используется в разнообразных реакциях синтеза, вот и для образования имидазольного кольца гистидина пригодился.

Реакция обмена азотистой головой глутамина с глутаминовой кислотой выглядят так:

Соединение, идущее на синтез гистидина, перегруппировывается, от него отщепляется корона – рибонуклеотид — 5-аминоимидазол-4-карбоксамид – промежуточный продукт синтеза АТФ. На синтез АТФ оно и направится.

Другой продукт расщепления содержит пять атомов углерода из первоначального скелета сахара рибозы, один атом углерода и один атом азота, отщепленные от первоначально вступившей в реакцию молекулы АТФ, и один атом азота, принесенный глутамином. Одновременно замыкается имидазольное кольцо.

В результате получается заготовка для гистидина.

На шестом этапе отщепляется еще одна молекула воды

Седьмой этап: молекула глутаминовой кислоты жертвует свою аминную голову, превращаясь в α-кетоглутарат. Аминная голова глутаминовой кислоты (глутамата) приращивается к заготовке гистидина.

Соединение теряет фосфорный хвост, превращаясь в спирт

На заключительном этапе образовавшийся спирт окисляется молекулой НАД, и спирт превращается в аминокислоту.

Весь цикл превращения выглядит так:

Веществами – предшественниками для синтеза гистидина выступают:

  1. Глюкоза, которая в пентозо-фосфатном цикле превращается в фосфорибозил-пирофосфат (ФРПФ). Углеродный скелет сахара станет углеродным скелетом аминокислоты
  2. Две молекулы АТФ, одна жертвует фосфорным хвостом для синтеза ФРПФ, другая отдает пуриновое основание для синтеза имидазольного кольца гистидина
  3. Глутаминовая кислота, которая расходуется очень экономно: первоначально молекула глутаминовой кислоты захватывает аммиак, превращаясь в глутамин, необходимый для синтеза гистидина. В ходе реакции глутамин отдает азотную группу, вновь превращаясь в глутаминовую кислоту, которая может быть использована для дезаминирования, дабы отдать азотную группу заготовке гистидина.
  4. Две молекулы НАД для окисления спирта в аминокислоту.

Другая схема того же каскада реакций:

На всех этапах синтеза задействованы ферменты:

  1. АТФ-фосфорибозил трансфераза
  2. Пирофосфогидролаза
  3. Фосфорибозил АМФ циклогидролаза
  4. Фосфорибозил формимино-5-аминоимидазол-4-карбоксамид рибонуклеотид изомераза
  5. Глутамин амидо трансфераза
  6. Имидазолглицерол – 3 – фосфатдегидратаза
  7. Гистидинол фосфат амино трансфераза
  8. Гистидинол фосфат фосфатаза
  9. Гистидинол дегидрогеназа


error: Контент защищен !!