Механизм формирования первого вдоха новорожденного. Физиология дыхания в перинатальном периоде

Как известно, становление функции дыхания у новорожден­ных является наиболее слабым звеном в системе общей адап­тации его к внеутробному переходу жизни. Спавшиеся при рождении легкие всегда представляют потенциальную опас­ность неполного или несвоевременного их расправления даже казалось бы при нормально протекающих родах.

От своевременного начала спонтанного дыхания и адекват­ного расправления легких зависит и адаптация функции крово­обращения, которая завершается началом функционирования малого круга кровообращения.

Дыхательный цикл, складывающийся из ритмически повто­ряющихся актов вдоха и выдоха, обеспечивает газообмен в легких и представляет собой координированные сокращения дыхательных мышц грудной клетки и диафрагмы. При этом важно знать, что именно у новорожденных диафрагмальное дыхание играет определяющую роль в обеспечении дыхатель­ных циклов, а, следовательно, и в становлении функции дыха­ния в целом.

Мышцы грудной клетки и другая дыхательная мускулатура оказываются менее подготовленными и менее тренированными к такой физической нагрузке, как циклический акт дыхания. Вместе с тем в оценке функциональной системы дыхания у но­ворожденных следует исходить из формирования к моменту рождения достаточно надежных механизмов, обеспечивающих своевременное начало функции дыхательного центра и газо­обмена. Физиологические механизмы, обеспечивающие начало дыхания у новорожденных, оказываются несостоятельными лишь при какой-либо тяжелой патологии, ведущей к срыву и нарушению адаптационно-приспособительных реакций.

Основные механизмы пусковой системы функции дыхания являются врожденными. Они развиваются во внутриутробном периоде и достигают к моменту рождения определенной сту­пени зрелости. Уже к 28-33 нед. беременности плод оказыва­ется способным к самостоятельному дыханию определенное время, приобретая при этом относительно устойчивый ритм ды­хания.

При доношенной беременности система дыхания у здорового плода оказывается настолько созревшей, что обеспечивает спон­танное и своевременное начало адекватной функции дыхания и газообмена, ее дальнейшее поддержание.

В аспекте оказания реанимационной помощи важное значе­ние приобретает знание физиологических механизмов первого вдоха новорожденного. Известно, что перевязка пуповины вле­чет за собой прекращение снабжения плода кислородом и на­копление в его тканях углекислоты. Отсюда возникло, казалось бы, логичное предположение, что изменение газового состава крови и, в частности, накопление углекислоты (физиологическо­го стимулятора дыхания), является причиной первого вдоха. К тому же возникающая при этом гипоксия плода и естествен­ная потребность организма в кислороде обеспечивают начало становления функции дыхания (Е.Л. Голубева, 1966).

По мнению других авторов, основной причиной возникнове­ния первого вдоха является возбуждение хеморецепторов каротидного клубочка дуги аорты в ответ на гипоксемию с после­дующим возбуждением дыхательного центра избыточным на­коплением СО2 как основного механизма регуляции системы дыхания.

По данным Е. Л. Голубевой (1966), механизм первого вдоха связан с суммарным воздействием физических и химических раздражителей, вызывающих поток периферической импульсации в ретикулярную формацию ствола мозга и, в первую оче­редь, среднего и продолговатого. В момент рождения ребенка он сразу же получает целый комплекс сенсорных возбуждений (разница температуры, давления в матке и вне ее, изменение положения тела, механические и другие раздражения). Пере­вязка пуповины ведет к резкому падению напряжения кисло­рода в крови и повышению углекислоты. В результате потока импульсации в различные отделы ЦНС и спинного мозга изби­рательно резко повышается возбудимость ретикулярной фор­мации, а затем дыхательной «системы» продолговатого мозга (центра дыхания).

По мнению Е. Л. Голубевой и А. И. Аршавского.(1960), специально изучавших этот вопрос, именно ретикулярная фор­мация среднего мозга с последующим возбуждением дыхатель­ного центра является основным триггером, запускающим ме­ханизм первого вдоха. При этом активирующее воздействие ретикулярной формации на центр дыхания проявляется лишь в условиях определенной готовности его к началу "ритмического возбуждения, что определяется зрелостью новорожденного. Пос­ле первого входа у него наступает окончательное становление функции дыхания по принципу: один раз возникшее «качание маятника» продолжается уже непрерывно, поддерживаемое влиянием целого комплекса физиологических раздражите­лей.

С момента первого вдоха и установления дыхательных эк­скурсий грудной клетки в воздухоносные пути поступает воз­дух, быстро расправляются «ателектазированные» легкие, раскрываются капилляры, начинается легочный кровоток. С этого момента функционирует малый круг кровообращения. Одновременно постепенно закрываются боталлов проток, оваль­ное отверстие межпредсердной перегородки, начинает раздель­но функционировать система левого и правого сердца.

По мере расправления легких и включения малого круга кровообращения возникаех единая система альвеолярно-капиллярного кровотока, определяющая адекватность газообмена. Раскрытие альвеол и легочных капилляров создает поток ин* терорецептивной импульсации по парасимпатической иннерва­ции и другим афферентным путям в различные отделы ЦНС и главным образом в дыхательный центр. Из центральной нерв­ной системы по афферентным волокнам импульсы через спи: нальные центры поступают к дыхательной мускулатуре, что обусловливает ритм и глубину дыхательных экскурсий. Так возникает рефлекторная дуга, обеспечивающая физиологиче­скую регуляцию функции дыхания (И. Д. Аршавский, 1960; Л. С. Персианинов, 1962).

По мере адаптации новорожденного к внутриутробной жиз­ни уже в первые 40-60 мин после рождения у него отмеча­ется нормальный ритм дыхания, частота его колеблется в пре­делах 40-50 в минуту. Одновременно устанавливаются и по­казатели газообмена в следующих параметрах: напряжение, кислорода (рО2) в смешанной капиллярной крови колеблется в пределах 60-80 мм рг. ст., напряжение углекислоты (рСО2) 30-45 мм рт. ст., рН в пределах 7,3-7,4; избыток оснований (ВД) -4,-8 ммоль/л крови, буферные основания (<8В) 36,8- 39,5 ммоль/л плазмы, стандартный бикарбонат (5В) 12- 14 мэкв/л плазмы, истинный бикарбонат 13,5-14,5 ммоль/л плазмы. Указанные параметры газообмена и КЩС характери­зуются закономерными колебаниями, так как становление функции дыхания у новорожденных в течение первого часа также отличается большими индивидуальными особенностями. Важно, что именно к этому периоду наступает так называемая первичная стабилизация показателей газообмена с последующей окончательной нормализацией их на протяжении дальнейшего периода новорожденности.

Параметры внешнего дыхания также весьма вариабельны. Так например, дыхательный объем варьирует от 15 до 25 мл {в среднем 20±5 мл), минутный объем дыхания колеблется в пре­делах 400-800 мл (в среднем 500±50 мл) (Г. Кеслер с соавт., 1968).

Как видно, в первые 30-40 мин функция дыхания у ново­рожденных характеризуется большими колебаниями основных параметров внешнего дыхания и газообмена. Это свидетельствует об интенсивной перестройке их в условиях внеутробной жизни и адаптации при переходе на легочное дыхание.

Сердечно-сосудистая система у новорожденного обладает значительно большими компенсаторными возможностями.

Систолическое давление в течение первого часа жизни ко­леблется в пределах 55-60 мм рт. ст., диастолическое 40- 30 мм рт. ст., частота сердечного ритма устанавливается в пре­делах 130-140 в минуту. В дальнейшем артериальное давле­ние постепенно повышается, а частота сердечных сокращений урежается.

Известно, что у новорожденных имеется высокий показатель гематокритной величины. Он колеблется в пределах 55- 60% и даже выше. Это объясняется высоким содержанием ге­моглобина (до 18-20 г%), эритроцитов (5,5-6,2 млн/мм3), лейкоцитов (25000-29000 в мм3) и других форменных элемен­тов, крови. Повышенные показатели гемоглобина и эритроцитов обусловливают высокую кислородную емкость крови, что име­ет важное приспособительное значение в процессе адаптации новорожденного к внеутробной жизни в первые часы и дни жизни после, рождения. Для стойкой адаптации функции кро­вообращения имеют значение объемные показатели массы кро­ви и ее компонентов. Так например, при массе новорожденного от 3000 до 4000 г ОЦК колеблется в пределах 330-360 мл (98-96 мл/кг), ОЦП-148-175 мл (46,6-46,1 мл/кг), ОЦЭ- 171,8-190,6 (51,7-50,1 мл/кг). Указанные величины также но­сят вариабельный характер, что зависит от целого ряда причин (способ родоразрешения, течение беременности, наличие ане­мии у матери и т. д.).

При недоношенном плоде, внутриутробной гипоксии, гипо­трофии, осложненном течении родового акта и по целому ряду других причин новорожденный может родиться в состоянии об­щей депрессии, апноэ, тяжелой асфиксии. В этих случаях жиз­неспособность ребенка зависит от своевременного- оказания ре­анимационной помощи, в полном ее объеме.

Следовательно, возникает необходимость в быстрой ориен­тации врача в степени тяжести асфиксии, что в свою очередь определяет оптимальный объем реанимационной помощи.

Неотложная помощь в акушерстве и гинекологии, Л.С. Персианинов, Н.Н. Расстригин, 1983г.

Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины, иногда – до него, т.е. сразу после рождения.

Факторы, стимулирующие первый вдох:

    Наличие в крови гуморальных раздражителей дыхания: СО 2 , Н + и недостаток О 2 . В процессе родов, особенно после перевязки пуповины, напряжение СО 2 и концентрация Н + возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

    Не менее важный фактор, стимулирующий первый вдох, - резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

    Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.

Таким образом, возникновение первого вдоха – результат одновременного действия ряда факторов.

Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, а первый дыхательный цикл более длительный, чем последующие дыхательные циклы. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость – воздух после попадания в них воздуха. Длительность первого вдоха 0,1–0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах, всасывается в кровеносное русло и лимфу.

У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие малорастяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются с более редкими дыханиями, 1-2 раза в минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных новорожденных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

Возрастные изменения дыхания:

После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

8.7. ИССЛЕДОВАНИЯ ОБМЕНА ВЕЩЕСТВ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ В ОРГАНИЗМЕ

Обмен веществ в организме взаимосвязан с превращением энергии. Потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую энергии. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма.

Теплообразование в организме носит 2-х фазный характер. При окислении белков, жиров и углеводов большая часть энергии превращается в теплоту (первичная теплота), а меньшая используется для синтеза АТФ, т.е. для аккумулирования в макроэргических связях. При окислении углеводов 77.3 % энергии химической связи глюкозы рассеивается в виде тепла, а 22,7 % идет на синтез АТФ. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, электрических процессов и в конечном счете тоже превращается в теплоту (вторичная теплота). Т.о., количество тепла, образовавшегося в организме, - это мера суммарной энергии химических связей, подвергшихся биологическому окислению. Энергия, образовавшаяся в организме, может быть выражена в единицах измерения тепла – калориях или джоулях.

Для исследования процессов энергообразования в организме используют: прямую калориметрию, непрямую калориметрию и исследование валового обмена.

Прямая калориметрия основана на непосредственном учете тепла, выделенного организмом. Биокалориметр – это герметизированная и хорошо теплоизолированная от внешней среды камера, куда подается О 2 и поглощается избыток СО 2 и паров. В ней по трубкам циркулирует вода. Тепло, выделяемое человеком или животным, находящимся в камере, нагревает циркулирующую воду, что позволяет по количеству протекающей воды и изменению ее температуры рассчитать количество тепла, выделенного исследуемым организмом.

Т.к. теплообразование в организме обеспечивается окислительными процессами, возможна непрямая калориметрия , т.е. косвенное, непрямое определение теплообразования по газообмену – учету потребленного О 2 и выделенного СО 2 с последующим расчетом теплопродукции.

Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии) – например, респираторный аппарат Шатерникова. Кратковременное определение газообмена проводят некамерными методами (открытые способы непрямой калориметрии).

Наиболее распространен способ Дугласа-Холдейна. В течение нескольких минут собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем измеряют объем выдохнутого воздуха и определяют в нем количество О 2 и СО 2 .

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО 2 к объему поглощенного О 2 .

ДК при окислении углеводов, белков и жиров различен. Окисление 1 г каждого из этих веществ требует неодинакового количества О 2 и сопровождается освобождением различного количества тепла.

При окислении углеводов ДК=1. Например, итог окисления глюкозы: С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О. Число молекул образовавшегося СО 2 равно числу молекул затраченного О 2 . А равное количество молекул газа, при одинаковой температуре и одинаковом давлении, занимает один и тот же объем (закон Авогадро-Жерара).

При окислении белков ДК = 0,8; жиров ДК = 0,7. Когда человек находится на смешанном питании в стандартных условиях ДК = 0,85 – 0,86.

Калорический эквивалент кислорода (КЭК) или калорическая стоимость кислорода – это количество тепла, выделяемого организмом после потребления 1 л кислорода.

Данный показатель зависит от ДК и определяется по специальным таблицам, где каждому значению ДК соответствует определенное значение калорической стоимости кислорода. Например: ДК=0,8; КС=4,801 ккал. ДК=0,9; КС=4,924.

Т.о., данные газоанализа переводят в тепловые единицы.

После определения объема кислорода, потребленного в единицу времени (сутки, час, минута), появляется возможность определить количество тепла, выделенного организмом за это время (КЭК, умноженный на объём потреблённого кислорода).

Во время работы ДК повышается и в большинстве случаев приближается к 1. Это объясняется тем, что во время напряженной мышечной работы главным источником энергии является окисление углеводов. После завершения работы ДК сначала повышается, затем резко снижается, и только спустя 30-50 мин нормализуется. Эти изменения ДК после работы не отражают истинного отношения между используемым в данный момент кислородом и выделенным СО 2 .

ДК в начале восстановительного периода повышается из-за того, что во время работы в мышцах накапливается молочная кислота, на окисление которой не хватало кислорода (кислородный долг). Молочная кислота поступает в кровь и вытесняет СО 2 из гидрокарбонатов, присоединяя основания. Благодаря этому количество выделенного СО 2 становится больше количества СО 2 , образовавшегося в данный момент в тканях.

Обратная картина наблюдается в дальнейшем, когда молочная кислота постепенно исчезает из крови. Одна ее часть окисляется, другая ресинтезируется в гликоген, третья выделяется с потом и мочой. По мере уменьшения количества молочной кислоты освобождаются основания. Основания связывают СО 2 и образуют гидрокарбонаты. Поэтому ДК падает вследствие задержки в крови СО 2 , поступающей из тканей.

Исследование валового обмена – это длительное (на протяжении суток) определение газообмена, которое дает возможность не только найти теплопродукцию организма, но и решить вопрос о том, за счет окисления каких веществ шло теплообразование. Для этого, помимо использовавшегося кислорода и выделившегося СО 2 определяются выделенные с мочой азот (1 г азота содержится в 6,25 г белка) и углерод (в белках содержится примерно 53% углерода).

Основной обмен (ОО) – это показатель, отражающий уровень энергетических процессов в стандартных условиях, которые максимально приближены к состоянию функционального покоя организма.

Энерготраты в условиях ОО связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем – дыхательной мускулатуры, сердца, почек, печени, с поддержанием мышечного тонуса. Освобождение в ходе этих процессов тепловой энергии обеспечивает теплопродукцию, необходимую для поддержания температуры тела.

5 условий определения ОО.

    Время. Исследование проводят утром до 9 часов после сна.

    Натощак (через 12-16 часов после приема пищи), так как прием и действие пищи вызывает интенсификацию энергетических процессов (специфическое динамическое действие пищи). СДДП сохраняется в течение нескольких часов. При белковой пище обмен увеличивается на 30%, при жирах и углеводах на 14-15%.

    Температура комфорта в помещении: 18-20 град.С. (температура, барометрическое давление, влажность воздуха и т.д. могут оказывать влияние на интенсивность окислительных процессов).

    Исследование проводится лежа, т.е. в состоянии мышечного покоя.

    Предварительно исключается прием фармакологических препаратов, влияющих на энергетические процессы, а также наркотических веществ.

В данных условиях у здорового человека ОО составляет от 1600 до 1800 ккал в сутки в зависимости от: 1.Возраста, 2. Пола, 3Массы тела (веса), 4. Роста.

Формулы и таблицы ОО – средние данные большого числа исследованных здоровых людей разного пола, возраста, массы тела и роста. Допустимые колебания – 10%.

Несоразмерно высокие величины ОО наблюдаются при избыточной функции щитовидной железы. Понижение ОО встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Интенсивность ОО, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина ОО человека в возрасте 20-40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте ОО снижается.

Правило поверхности – затраты энергии теплокровными животными пропорциональны поверхности тела.

Если пересчитать интенсивность ОО на 1 кг массы тела, то окажется, что у разных видов животных и даже у людей с разной массой тела и ростом этот показатель сильно различается. Если же произвести перерасчет интенсивности ОО на 1 м 2 поверхности тела, то полученные результаты различаются не столь резко.

Это правило относительно. У 2-х индивидуумов с одинаковой поверхностью тела обмен веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Обмен энергии при физическом труде .

Мышечная работа значительно увеличивает расход энергии, поэтому суточный расход энергии значительно превышает величину ОО. Это увеличение составляет рабочую прибавку. Она тем больше, чем интенсивнее мышечная работа.

Степень энергетических затрат при различной физической активности определяется коэффициентом физической активности (КФА). КФА – отношение общих энергозатрат за сутки к величине ОО. По этому принципу выделяется 5 групп:

Особенности профессии

Общий суточный расход энергии, ккал

Преимущественно умственного труда

Легкого физического труда

Труд средней тяжести

Тяжелого труда

Особо тяжелого физического труда (мужчины)

Умственный труд вызывает ничтожные (2-3%) повышения затрат энергии по сравнению с полным покоем, если не сопровождается движением. Однако двигательная активность и эмоциональное возбуждение повышают энергозатраты (пережитое эмоциональное возбуждение может вызвать повышение обмена на 11-19% в течение нескольких дней).

Суточный расход энергии у детей и подростков зависит от возраста:

6 мес.- 1 г - 800 ккал

1 – 1,5 г - 1300

1,5 – 2 - 1500

14 – 17 (юноши) – 3150

13 - 17 (девушки) – 2750.

К 80 годам энерготраты снижаются (2000-2200 ккал).

Механизм первого вдоха новорожденного.

Сурфактант необходим для начала дыхания при рождении ребенка. До рождения лёгкие находятся в спавшемся состоянии. Ребёнок после рождения делает несколько сильных дыхательных движений, лёгкие расправляются, а сурфактант удерживает их от спадения (коллапса). Недостаток или дефекты сурфактанта вызывают тяжёлое заболевание (синдром дыхательного дистресса). Поверхностное натяжение в лёгких у таких детей высокое, поэтому многие альвеолы находятся в спавшемся состоянии.

#85 Охарактеризуйте узловые мех-мы функциональной системы, поддерживающей оптимальный для метаболизма газовый состав крови.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

Первый вдох новорожденного происходит по такому механизму — перемежающееся сжатие грудной клетки в процессе родов через естественные родовые пути облегчает удаление из легких фе­тальной жидкости. Сурфактант выстилающего альвеолы слизистого слоя, снижая поверхностное натяжение и необходимое для открытия альвеол давление, облегчает аэрацию легких.

Несмотря на это, давление, необходимое для наполнения возду­хом легких при первом вдохе новорожденного, выше, чем при вдохе в любом другом возрасте. Оно колеблется от 10 до 50 см вод. ст. и обычно составляет 10-20 см вод. ст., в то время как при последующих вдохах у здоровых новорожденных и у взрослых оно около 4 см вод. ст. Это обусловлено необходимостью преодоления при первом вдохе сил поверхностного натяжения (особенно в мелких разветвлениях бронхов), вяз­кости оставшейся в дыхательных путях жидкости и поступления в легкие приблизительно 50 мл воздуха, 20-30 мл из которых остаются в легких, образуя ФОЕ. Большая часть фетальной жидко­сти из легких всасывается в легочный кровоток, который многократно увеличивается, так как весь выброс правого желудочка направляется в сосу­дистое русло легких. Остатки фетальной жидко­сти выделяются через верхние дыхательные пути и проглатываются, а иногда вновь попадают из ро­тоглотки в дыхательные пути. Механизм удаления жидкости нарушается при кесаревом сечении или вследствие повреждения эндотелия, гипоальбуминемии, повышенного венозного давления в легких, поступления в кровь новорожденного седативных препаратов.

Пусковые факторы первого вдоха новорожденного многочис­ленны. Каков вклад каждого из них, неизвестно. В их число входят снижение Ро2 и pH и повыше­ние Рсо2 вследствие прекращения плацентарного кровообращения, перераспределение сердечного выброса после пережатия сосудов пуповины, сни­жение температуры тела, разнообразные тактиль­ные стимулы.

У детей с низкой массой тела при рождении лег­кие значительно податливей, чем у доношенных, что затрудняет первый вдох новорожденного. ФОЕ у глубоко недо­ношенных наименьшая в связи с наличием ателек­тазов. Нарушения вентиляционно-перфузионного отношения наиболее выражены и длительны при образовании воздушных полостей по типу воздуш­ных ловушек. В результате ателектазов, внутрилегочного шунтирования и гиповентиляции развива­ется гипоксемия (Рао2 50-60 мм рт. ст.) и гиперкапния. Наиболее глубокие, близкие к таковым при болезни гиалиновых мембран нарушения газооб­мена наблюдаются у детей с экстремально низкой массой тела при рождении.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Оценка состояния новорожденного ребенка в первую очередь отражает его жизнеспособность и возможность адаптации к внешней...
  2. В характеристику неврологического статуса новорожденного ребенка входит состояние тонуса мышц и двигательной актив­ности, оценка безусловных...
  3. Рождение ребенка одно из самых важных событий в семье любого человека. В этом сложном процессе...
  4. Новорожденный малыш вначале выглядит «скрюченным». Ручки и ножки еще не смогли разогнуться. Со временем, когда...
  5. Под зрелостью новорожденного ребенка подразумевают соответствие морфологического и функционального развития ЦНС, желудочно-кишечного аппарата и дыхательной...
  6. Появление в доме новорожденного крохи – невероятная радость и безграничное счастье. Однако это еще и...

ДЫХАТЕЛЬНЫЙ ЦЕНТР.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром , расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост ) находится пневмотаксический центр , который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга , иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

Регуляция деятельности дыхательного центра.

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ , который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы , чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.

При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ .

Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений – гиперпноэ . Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ . Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ .

Механизм первого вдоха новорожденного.

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

Рефлекторные механизмы.

Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга - Брейера ), корня легкого и плевры (пульмоторакальный рефлекс ), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса ), проприорецепторов дыхательных мышц.

Наиболее важным рефлексом является рефлекс Геринга - Брейера . В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.

Рефлекс Геринга - Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха .

Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов . К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель - при возбуждении рецепторов гортани, трахеи, бронхов.

Влияние клеток коры большого мозга на активность дыхательного центра.

По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

Первый уровень регуляции - спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.

Второй уровень регуляции - продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции - верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

ДЫХАНИЕ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ.

У тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50-100 л/мин по сравнению с 5-8 л в состоянии относительного физиологического покоя. Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей, в основном, изменяется глубина дыхания, у нетренированных - частота дыхательных движений.

При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих от клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и к избытку углекислого газа.

Одновременно возникают приспособительные реакции в сердечно-сосудистой системе . Увеличиваются частота и сила сердечных сокращений, повышается артериальное давление, расширяются сосуды работающих мышц и суживаются сосуды других областей.

Таким образом, система дыхания обеспечивает возрастающие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.




error: Контент защищен !!