Площадь боковой поверхности конуса. Как найти образующую конуса

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.

Здесь представлены задачи с конусами, условие связано с его площадью поверхности. В частности в некоторых задачах стоит вопрос об изменении площади при увеличении (уменьшении) высоты конуса или радиуса его основания. Теория для решения задач в . Рассмотрим следующие задачи:

27135. Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса.

Площадь боковой поверхности конуса равна:

Подставляем данные:

75697. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 36 раз, а радиус основания останется прежним?

Площадь боковой поверхности конуса:

Образующая увеличивается в 36 раз. Радиус остался прежним, значит длина окружности основания не изменилась.

Значит площадь боковой поверхности изменённого конуса будет иметь вид:

Таким образом, она увеличится в 36 раз.

*Зависимость прямолинейная, поэтому эту задачу без труда можно решить устно.

27137. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 1,5 раза?

Площадь боковой поверхности конуса равна:

Радиус уменьшается в 1,5 раза, то есть:

Получили, что площадь боковой поверхности уменьшилась в 1,5 раза.

27159. Высота конуса равна 6, образующая равна 10. Найдите площадь его полной поверхности, деленную на Пи.

Полная поверхность конуса:

Необходимо найти радиус:

Известна высота и образующая, по теореме Пифагора вычислим радиус:

Таким образом:

Полученный результат разделим на Пи и запишем ответ.

76299. Площадь полной поверхности конуса равна 108. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

Сечение проходит через середину высоты параллельно основанию. Значит радиус основания и образующая отсеченного конуса будут в 2 раза меньше радиуса и образующей исходного конуса. Запишем чему равна площадь поверхности отсечённого конуса:

Получили, что она будет в 4 раза меньше площади поверхности исходного, то есть 108:4 = 27.

*Так как исходный и отсечённый конус являются подобными телами, то также можно было воспользоваться свойством подобия:

27167. Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на Пи.

Формула полной поверхности конуса:

Радиус известен, необходимо найти образующую.

По теореме Пифагора:

Таким образом:

Результат разделим на Пи и запишем ответ.

Задача. Площадь боковой поверхности конуса в четыре раза больше площади основания. Найдите чему равен косинус угла между образующей конуса и плоскостью основания.

Площадь основания конуса равна:

Геометрия является разделом математики, изучающим структуры в пространстве и отношение между ними. В свою очередь она также состоит из разделов, и одним из них является стереометрия. Она предусматривает изучение свойств объемных фигур, находящихся в пространстве: куба, пирамиды, шара, конуса, цилиндра и др.

Конус - это тело в евклидовом пространстве, которое ограничивает коническая поверхность и плоскость, на которой лежат концы ее образующих. Его образование происходит в процессе вращения прямоугольного треугольника вокруг любого из его катетов, поэтому он относится к телам вращения.

Составляющие конуса

Различают следующие виды конусов: косой (или наклонный) и прямой. Косым называется тот, ось которого пересекается с центром его основания не под прямым углом. По этой причине высота в таком конусе не совпадает с осью, так как она является отрезком, который опущен из вершины тела на плоскость его основания под углом 90°.

Тот конус, ось которого расположена перпендикулярно к его основанию, называется прямым. Ось и высота в таком геометрическом теле совпадают по причине того, что вершина в нем расположена над центром диаметра основания.

Конус состоит из следующих элементов:

  1. Круга, являющегося его основанием.
  2. Боковой поверхности.
  3. Точки, не лежащей в плоскости основания, называющейся вершиной конуса.
  4. Отрезков, которые соединяют точки круга основания геометрического тела и его вершину.

Все эти отрезки являются образующими конуса. Они наклонные к основанию геометрического тела, и в случае прямого конуса их проекции равны, так как вершина равноотдалена от точек круга основания. Таким образом, можно сделать вывод, что в правильном (прямом) конусе образующие равны, то есть имеют одинаковую длину и образуют одинаковые углы с осью (или высотой) и основанием.

Так как в косом (или наклонном) теле вращения вершина смещена по отношению к центру плоскости основания, образующие в таком теле имеют разную длину и проекцию, поскольку каждая из них находится на разном расстоянии от двух любых точек круга основания. Кроме того, углы между ними и высотой конуса также будут отличаться.

Длина образующих в прямом конусе

Как написано ранее, высота в прямом геометрическом теле вращения перпендикулярна плоскости основания. Таким образом, образующая, высота и радиус основания создают в конусе прямоугольный треугольник.

То есть, зная радиус основания и высоту, при помощи формулы из теоремы Пифагора, можно вычислить длину образующей, которая будет равна сумме квадратов радиуса основания и высоты:

l 2 = r 2 + h 2 или l = √r 2 + h 2

где l - образующая;

r - радиус;

h - высота.

Образующая в наклонном конусе

Исходя из того, что в косом, или наклонном конусе образующие имеют не одинаковую длину, рассчитать их без дополнительных построений и вычислений не получится.

Прежде всего необходимо знать высоту, длину оси и радиус основания.

r 1 = √k 2 - h 2

где r 1 - это часть радиуса между осью и высотой;

k - длина оси;

h - высота.

В результате сложения радиуса (r) и его части, лежащей между осью и высотой (r 1), можно узнать полную сформированного образующей конуса, его высотой и частью диаметра:

где R - катет треугольника, образованного высотой, образующей и частью диаметра основания;

r - радиус основания;

r 1 - часть радиуса между осью и высотой.

Пользуясь все той же формулой из теоремы Пифагора, можно найти длину образующей конуса:

l = √h 2 + R 2

или, не производя отдельно расчет R, объединить две формулы в одну:

l = √h 2 + (r + r 1) 2 .

Несмотря на то, прямой или косой конус и какие вводные данные, все способы нахождения длины образующей всегда сводятся к одному итогу - использованию теоремы Пифагора.

Сечение конуса

Осевым называется плоскость, проходящая по его оси либо высоте. В прямом конусе такое сечение представляет собой равнобедренный треугольник, в котором высотой треугольника является высота тела, его сторонами выступают образующие, а основание - это диаметр основания. В равностороннем геометрическом теле осевое сечение является равносторонним треугольником, так как в этом конусе диаметр основания и образующие равны.

Плоскость осевого сечения в прямом конусе является плоскостью его симметрии. Причиной этому служит то, что его вершина находится над центром его основания, то есть плоскость осевого сечения делит конус на две одинаковые части.

Так как в наклонном объемном теле высота и ось не совпадают, плоскость осевого сечения может не включать в себя высоту. Если осевых сечений в таком конусе можно построить множество, так как для этого необходимо соблюдать лишь одно условие - оно должно проходить только через ось, то осевое сечение плоскости, которому будет принадлежать высота этого конуса, можно провести лишь одно, потому что количество условий увеличивается, а, как известно, две прямые (вместе) могут принадлежать только одной плоскости.

Площадь сечения

Упомянутое ранее осевое сечение конуса представляет собой треугольник. Исходя из этого, его площадь можно рассчитать по формуле площади треугольника:

S = 1/2 * d * h или S = 1/2 * 2r * h

где S - это площадь сечения;

d - диаметр основания;

r - радиус;

h - высота.

В косом, или наклонном конусе сечение по оси также является треугольником, поэтому в нем площадь сечения рассчитывается аналогично.

Объем

Поскольку конус является объемной фигурой в трехмерном пространстве, то можно вычислить его объем. Объемом конуса называется число, которое характеризует это тело в единице измерения объема, то есть в м 3 . Расчет не зависит от того, прямой он или косой (наклонный), так как формулы для двух этих видов тел не отличаются.

Как указано ранее, образование прямого конуса происходит вследствие вращения прямоугольного треугольника по одному из его катетов. Наклонный же, или косой конус образуется иначе, поскольку его высота смещена в сторону от центра плоскости основания тела. Тем не менее такие отличия в строении не влияют на методику расчета его объема.

Расчет объема

Любого конуса выглядит следующим образом:

V = 1/3 * π * h * r 2

где V - это объем конуса;

h - высота;

r - радиус;

π - константа, равная 3,14.

Для расчета высоты тела необходимо знать радиус основания и длину его образующей. Поскольку радиус, высота и образующая объединяются в прямоугольный треугольник, то высоту можно рассчитать по формуле из теоремы Пифагора (a 2 + b 2 = c 2 или в нашем случае h 2 + r 2 = l 2 , где l - образующая). Высота при этом будет рассчитываться путем извлечения квадратного корня из разности квадратов гипотенузы и другого катета:

a = √c 2 - b 2

То есть высота конуса будет равна величине, полученной после извлечения квадратного корня из разности квадрата длины образующей и квадрата радиуса основания:

h = √l 2 - r 2

Рассчитав таким методом высоту и зная радиус его основания, можно вычислить объем конуса. Образующая при этом играет важную роль, так как служит вспомогательным элементом в расчетах.

Аналогичным образом, если известна высота тела и длина его образующей, можно узнать радиус его основания, извлекая квадратный корень из разности квадрата образующей и квадрата высоты:

r = √l 2 - h 2

После чего по той же формуле, что указана выше, рассчитать объем конуса.

Объем наклонного конуса

Так как формула объема конуса одинакова для всех видов тела вращения, отличие в его расчете составляет поиск высоты.

Для того чтобы узнать высоту наклонного конуса, вводные данные должны включать длину образующей, радиус основания и расстояние между центром основания и местом пересечения высоты тела с плоскостью его основания. Зная это, можно с легкостью рассчитать ту часть диаметра основания, которая будет являться основанием прямоугольного треугольника (образованного высотой, образующей и плоскостью основания). После чего, снова используя теорему Пифагора, произвести расчет высоты конуса, а впоследствии и его объема.

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.



error: Контент защищен !!