Современные способы обработки металлов. Комбинированные способы тепловой обработки

Термообработка представляет собой совокупность процессов нагрева металлов до заданной температуры, выдержки и охлаждения с целью придания заготовке определенных физико-механических свойств в результате изменения структуры (внутреннего строения) детали. Материал для заготовок – цветные металлы, сталь.

Основные виды термообработки:

  1. Отжиг 1-го или 2-го рода. В процессе нагрева металлов до определенной температуры, после выдержки и охлаждения получается равновесная структура, повышается вязкость и пластичность, снижается твердость и прочность заготовки.
  2. Закалка с полимерным превращением или без. Цель термообработки – повысить параметры прочности и твердости материала за счет образования неравновесной структуры. Применяется для тех сплавов, которые претерпевают фазовые превращения в твердом состоянии при процессах нагрева и охлаждения.
  3. Отпуск. Ему подвергаются прочные стали, закаленные металлические сплавы. Основные параметры метода – температура нагрева, скорость охлаждения, время выдержки.
  4. Старение применяется к сплавам, которые были подвержены закалке без полиморфного превращения. После закалки повышается прочность и твердость магниевых, алюминиевых, никелевых, медных сталей.
  5. Химико-термическая обработка. Технологический процесс изменяет химический состав, структуру и свойства поверхности деталей. После обработки повышается износостойкость, твердость, сопротивление усталости и контактной выносливости, антикоррозийная устойчивость материала.
  6. Термомеханическая обработка. Этот вид включает процесс пластической деформации, с помощью которой создается повышенная плотность дефектов (дислокации) кристаллического строения заготовки. Применяют данный метод для сплавов алюминия и магния.

Сварочный, электрический и токарный способ обработки

Сварка – получение неразъемного соединения детали из стали за счет нагрева до плавления или до высокопластического состояния. В процессе обработки материал расплавляется по краю соединяемых частей, перемешивается и затвердевает, при этом образуется шов после охлаждения. Различают электрическую (дуговую или контактную) и химическую (термитную или газовую) сварку.

Токарный способ обработки – ручные работы на специальных станках с целью удаления лишнего слоя и придания деталям определенных форм, шероховатости, точности, габаритов. Основные виды в зависимости от назначения работ: основные, ремонтные и сборочные.

К электрическим методам металлообработки относят:

  1. Электроискровой способ. Этот метод основан на явлении разрушения прочных металлов под действием электроискровых разрядов.
  2. Ультразвуковой метод. При помощи специальных установок обрабатываются драгоценные камни, твердые сплавы, закаленная сталь и прочие материалы.

Литье металлов

Технологический процесс литья состоит в том, что детали получаются после заливки расплавленного металла в определенные формы. Применяют различные материалы:

  • чугун;
  • сталь;
  • медные, магниевые, алюминиевые и цинковые сплавы.

Обработку металла в современной промышленности принято различать по видам и методам. Наибольшее число видов обработки имеет самый "древний", механический метод: точение, сверление, растачивание, фрезерование, шлифование, полирование и т. д. Недостаток механической обработки - большие отходы металла в стружку, опилки, угар. Более экономный метод - штамповка, применяемая в меру развития производства стального листа. По за последние десятилетия появились новые методы, расширившие возможности металлообработки,- электрофизические и электрохимические.

В предыдущих статьях вы познакомились со штамповкой и резанием металлов. А теперь мы расскажем вам об электрофизических методах (электроэрозионном, ультразвуковом, световом, электроннолучевом) и электрохимических.

Электроэрозионная обработка

Все знают, какое разрушительное действие может произвести атмосферный электрический разряд -молния. Но не каждому известно, что уменьшенные до малых размеров электрические разряды с успехом используются в промышленности. Они помогают создавать из металлических заготовок сложнейшие детали машин и аппаратов.

На многих заводах сейчас работают станки, у которых инструментом служит мягкая латунная проволочка. Эта проволочка легко проникает в толщу заготовок из самых твердых металлов и сплавов, вырезая детали любой, порой прямо-таки причудливой формы. Как же это достигается? Присмотримся к работающему станку. В том месте, где инструмент-проволочка ближе всего расположен к заготовке, мы увидим светящиеся искорки-молнии, которые ударяют в заготовку.

Температура в месте воздействия этих электрических разрядов достигает 5000-10000° С. Ни один из известных металлов и сплавов не может противостоять таким температурам: они мгновенно плавятся и испаряются. Электрические заряды как бы "разъедают" металл. Поэтому и сам способ обработки получил название электроэрозионного (от латинского слова "эрозия" - "разъедание").

Каждый из возникающих разрядов удаляет маленькую частичку металла, и инструмент постепенно погружается в заготовку, копируя в ней свою форму.

Разряды между заготовкой и инструментом в электроэрозионных станках следуют один за другим с частотой от 50 до сотен тысяч в секунду в зависимости от того, какую скорость обработки и чистоту поверхности мы хотим получить. Уменьшая мощность разрядов и увеличивая частоту их следования, металл удаляют все меньшими частицами; при этом повышается чистота обработки, но уменьшается ее скорость. Действие каждого из разрядов должно быть кратковременным, чтобы испаряющийся металл сразу же охлаждался и не мог соединиться вновь с металлом заготовки.

Схема работы электроэрозионного станка для контурного вырезания отверстий сложных профилей. Нужную работу здесь производит электрический разряд, возникающий между инструментом - латунной проволокой и деталью.

При электроэрозионной обработке заготовку детали и инструмент из тугоплавкого или хорошо проводящего тепло материала присоединяют к источнику электрического тока. Чтобы действие разрядов тока было кратковременным, их периодически прерывают либо отключением напряжения, либо быстрым перемещением инструмента относительно поверхности обрабатываемой заготовки. Необходимое охлаждение выплавляемого и испаряемого металла, а также его удаление из рабочей зоны достигаются погружением обрабатываемой заготовки в токоне-проводящую жидкость - обычно машинное масло, керосин. Отсутствие токопроводимости у жидкости способствует тому, что разряд действует между инструментом и обрабатываемой заготовкой при очень малых расстояниях (10-150 мкм), т. е. только в том месте, к которому подведен инструмент и которое мы хотим подвергнуть действию тока.

Электроэрозионный станок обычно имеет устройства для перемещения инструмента в нужном направлении и источник электрического питания, возбуждающий разряды. В станке, имеется также система автоматического слежения за размером промежутка между обрабатываемой заготовкой и инструментом; она сближает инструмент с заготовкой, если этот промежуток чрезмерно велик, или отводит его от заготовки, если он слишком мал.

Как правило, электроэрозионный способ применяют в тех случаях, когда обработка на металлорежущих станках затруднена или невозможна. из-за твердости материала или когда сложная форма обрабатываемой детали не позволяет создать достаточно прочный режущий инструмент.

В качестве инструмента может использоваться не только проволочка, но и стержень, диск и др. Так, используя инструмент в виде стержня сложной объемной формы, получают как бы оттиск его в обрабатываемой заготовке. Вращающимся диском прожигают узкие щели и режут прочные металлы.

Электроэрозионный станок.

Существует несколько разновидностей электроэрозионного метода, каждая из которых обладает своими свойствами. Одни разновидности этого метода применяются для прожигания сложнофасонных полостей и вырезания отверстий, другие - для разрезания заготовок из жаропрочных и титановых сплавов и т. д. Перечислим некоторые из них.

При электроискровой обработке электрическим способом возбуждаются кратковременные искровые и искро-дуговые разряды температурой до 8000-10 000° С. Электрод-инструмент подключается к отрицательному, а обрабатываемая заготовка - к положительному полюсу источника электрического питания.

Электроимпульсную обработку производят электрические возбуждаемые и прерываемые дуговые разряды температурой до 5000° С. Полярность электрода-инструмента и обрабатываемой детали обратная по отношению к электроискровой обработке.

При анодно-механической обработке употребляют электрод-инструмент в виде диска или бесконечной ленты, который быстро перемещается относительно заготовки. При этом методе используют специальную жидкость, из которой на поверхность заготовки выпадает токонепроводящая пленка. Электрод-инструмент процарапывает пленку, и в местах, где на заготовке обнажилась поверхность, возникают разрушающие ее дуговые разряды. Они и производят нужную работу.

Еще более быстрое перемещение электрода, охлаждающее его поверхность и прерывающее дуговые разряды, применено при электроконтактной обработке, осуществляемой обычно в воздухе или в воде.

В нашей стране выпускают целый набор электроэрозионных станков для обработки самых различных деталей, начиная с очень маленьких и кончая крупными, массой до нескольких тонн.

Электроэрозионные станки работают сейчас во всех отраслях машиностроения. Так, на автомобильных и тракторных заводах их используют при изготовлении штампов коленчатых валов, шатунов и других деталей, на авиазаводах обрабатывают на электроэрозионных станках лопатки турбореактивных двигателей и детали гидроаппаратуры, на заводах электронных приборов - детали радиоламп и транзисторов, магниты и пресс-формы, на металлургических комбинатах разрезают прутки проката и слитки из особо твердых металлов и сплавов.

Работает ультразвук

Еще сравнительно недавно никто не мог и предположить, что звуком станут измерять глубину моря, сваривать металл, сверлить стекло и дубить кожи. А сейчас звук осваивает все новые и новые профессии.

Что же такое звук и благодаря чему он стал незаменимым помощником человека в ряде важнейших производственных процессов?

Звук - это упругие волны, распространяющиеся в виде чередующихся сжатий и разрежений частичек среды (воздуха, воды, твердых тел и т. д.). Измеряется частота звука количеством сжатий и разрежений: каждое сжатие и последующее разрежение образуют одно полное колебание. За единицу частоты звука принято полное колебание, которое совершается в 1 с. Эта единица называется герцем (Гц).

Звуковая волна несет с собой энергию, которая определяется как сила звука и за единицу которой принят 1 Вт/см 2 .

Человек воспринимает колебания различной частоты как звуки разной высоты. Низким звукам (бой барабана) соответствуют низкие частоты (100-200 Гц), высоким (свисток) - большие частоты (около 5 кГц, или 5000 Гц). Звуки ниже 30 Гц называются инфразвуками, а выше 15-20 кГц - ультразвуками. Ультразвуки и инфразвуки человеческое ухо не воспринимает.

Ухо человека приспособлено к восприятию звуковых волн очень малой силы. Например, раздражающий нас громкий крик имеет интенсивность, измеряемую нановаттами на квадратный сантиметр (нВт/см 2), т. е. миллиардными долями Вт/см 2 . Если превратить в тепло энергию от громкого одновременного разговора всех жителей Москвы в течение суток, то ее окажется недостаточно даже для того, чтобы вскипятить ведро воды. Такие слабые звуковые волны нельзя использовать для выполнения каких-либо производственных процессов. Конечно, искусственным путем можно создать звуковые волны во много раз более сильные, но они разрушат орган слуха человека, приведут к глухоте.

В области инфразвуковых частот, которые не опасны для уха человека, создать мощные колебания искусственным способом очень сложно. Иное дело -ультразвук. Сравнительно просто можно получить от искусственных источников ультразвук интенсивностью в несколько сотен Вт/см 2 , т. е. в 10 12 раз больше допустимой интенсивности звука, и этот ультразвук совершенно безвреден для человека. Поэтому, если говорить точнее, не звук, а ультразвук оказался тем мастером-универсалом, который нашел такое широкое применение в промышленности (см. т. 3 ДЭ, ст. "Звук").

Здесь мы расскажем только об использовании ультразвуковых колебаний в станках для обработки хрупких и твердых материалов. Как же устроены и работают такие станки?

Ультразвуковой станок.

Схема процесса ультразвуковой обработки.

Сердцем станка является преобразователь энергии высокочастотных колебаний электрического тока. Ток поступает на обмотку преобразователя от электронного генератора и превращается в энергию механических (ультразвуковых) колебаний той же частоты. Эти превращения происходят в результате магнитострикции - явления, которое заключается в том, что ряд материалов (никель, сплав железа с кобальтом и др.) в переменном магнитном поле изменяют свои линейные размеры с той же частотой, с которой изменяется поле.

Таким образом, высокочастотный электрический ток, проходя по обмотке, создает переменное магнитное поле, под воздействием которого колеблется преобразователь. Но получаемые амплитуды колебаний малы по размеру. Чтобы их увеличить и сделать пригодными для полезной работы, во-первых, настраивают всю систему в резонанс (добиваются равенства частоты колебаний электрического тока и собственной частоты колебаний преобразователя), а во-вторых, к преобразователю крепят специальный концентратор-волновод, который малые амплитуды колебаний на большей площади превращает в большие амплитуды на меньшей площади.

К торцу волновода присоединяют инструмент такой формы, какой хотят иметь отверстие. Инструмент вместе со всей колебательной системой прижимают с небольшим усилием к материалу, в котором надо получить отверстие, а к месту обработки подводят абразивную суспензию (зерна абразива меньше 100 мкм, смешанные с водой). Эти зерна попадают между инструментом и материалом, и инструмент, как отбойный молоток, вбивает их в материал. Если материал хрупкий, то зерна абразива откалывают от него микрочастицы размером 1-10 мкм. Казалось бы, немного! Но частиц абразива под инструментом сотни, и инструмент наносит 20 000 ударов в 1 с. Поэтому процесс обработки проходит достаточно быстро, и отверстие размером 20-30 мм в стекле толщиной 10-15 мм можно сделать за 1 мин. Ультразвуковой станок позволяет делать отверстия любой формы, причем даже в хрупких материалах, которые трудно обрабатывать.

Ультразвуковые станки широко применяются для изготовления твердосплавных матриц штампов, ячеек "памяти" вычислительных машин из феррита, кристаллов кремния и германия к полупроводниковым приборам и т. д.

Сейчас речь шла только об одном из многих случаев применения ультразвука. Однако он используется также для сварки, мойки, очистки, контроля, измерений и отлично выполняет эти свои обязанности. Ультразвук очень чисто "моет" и обезжиривает сложнейшие детали приборов, производит пайку и лужение алюминия и керамики, находит дефекты в металлических деталях, измеряет толщину деталей, определяет скорость течения жидкостей в разных системах и производит еще десятки других работ, которые без него не могут быть выполнены.

Электрохимическая обработка металлов

Если в сосуд с токопроводящей жидкостью ввести твердые проводящие пластинки (электроды) и подать на них напряжение, возникает электрический ток. Такие токопроводящие жидкости называются проводниками второго рода или электролитами. К их числу относятся растворы солей, кислот или щелочей в воде (или в других жидкостях), а также расплавы солей.

Электрохимический копировально-прошивочный станок.

Схема электролиза.

Схема электрохимической обработки отверстий сложных конфигураций в деталях.

Носителями тока в электролитах служат положительные и отрицательные частицы - ионы, на которые расщепляются в растворе молекулы растворенного вещества. При этом положительно заряженные ионы движутся к отрицательному электроду - катоду, отрицательные - к положительному электроду - аноду. В зависимости от химической природы электролита и электродов эти ионы либо выделяются на электродах, либо вступают в реакцию с электродами или растворителем. Продукты реакций либо выделяются на электродах, либо переходят в раствор. Это явление получило название электролиза.

Электролиз широко применяется в промышленности для изготовления металлических слепков с рельефных моделей, для нанесения защитных и декоративных покрытий на металлические изделия, для получения из расплавленных руд металлов, для очистки металлов, для получения тяжелой воды, в производстве хлора и др.

Одна из новых областей промышленного применения электролиза - электрохимическая размерная обработка металлов. Она основана на принципе растворения металла под действием тока в водных растворах солей.

Светолучевой станок для обработки алмазных фильтр.

Схема оптического квантового генератора: 1 - импульсная лампа; 2 - конденсатор; 3 - рубин; 4 - параллельные зеркала; 5 - линза.

При электрохимической размерной обработке электроды располагают в электролите на очень близком расстоянии друг от друга (50-500 мкм). Между ними под давлением прокачивают электролит. Благодаря этому металл растворяется чрезвычайно быстро, и если поддерживать постоянным расстояние между электродами, то на заготовке (аноде) можно получить достаточно точное отображение формы электрода-инструмента (катода).

Таким образом, с помощью электролиза можно сравнительно быстро (быстрее, чем механическим методом) изготавливать детали сложной формы, разрезать заготовки, делать в деталях отверстия или пазы любой формы, затачивать инструмент и т. д.

К преимуществам электрохимического метода обработки следует отнести, во-первых, возможность обрабатывать любые металлы, независимо от их механических свойств, во-вторых, то, что электрод-инструмент (катод) в процессе обработки не изнашивается.

Электрохимическая обработка производится на электрохимических станках. Их основные группы: универсальные копировально-прошивочные - для изготовления штампов, пресс-форм и других изделий сложной формы; специальные - для обработки лопаток турбин; заточные и шлифовальные - для заточки инструмента и плоского или профильного шлифования труднообрабатываемых металлов и сплавов.

Свет работает (лазер)

Вспомните "Гиперболоид инженера Гарина" А. Н. Толстого. Идеи, еще недавно считавшиеся фантастическими, становятся реальностью. Сегодня световым лучом прожигают отверстия в таких прочных и твердых материалах, как сталь, вольфрам, алмаз, и это уже никого не удивляет.

Всем вам приходилось, конечно, ловить солнечные зайчики или фокусировать линзой солнечный свет в маленькое яркое пятно и выжигать им разные рисунки на дереве. А вот на стальном предмете вы не сможете таким образом оставить какой-либо след. Конечно, если бы удалось сконцентрировать солнечный свет в очень маленькую точку, скажем, в неокольцо микрометров, то тогда удельная мощность (т. е. отношение мощности к площади) была бы достаточной, чтобы расплавить и даже испарить в этой точке любой материал. Но солнечный свет невозможно так сфокусировать.

Чтобы с помощью линзы сфокусировать свет в очень малое пятно и получить при этом большую удельную мощность, он должен обладать минимум тремя свойствами: быть монохроматическим, т. е. одноцветным, распространяться параллельно (иметь малую расходимость светового потока) и быть достаточно ярким.

Линза фокусирует лучи различного цвета на разном расстоянии. Так, лучи синего цвета собираются в фокус дальше, чем красного. Так как солнечный свет состоит из лучей различного цвета, от ультрафиолетового до инфракрасного, то и точно сфокусировать его не удается - фокусное пятно получается размытым, относительно большим. Очевидно, что монохроматический свет дает значительно меньшее по площади фокусное пятно.

Газовый лазер, применяемый для резки стекла, тонких пленок и тканей. В ближайшем будущем такие установки будут применяться для раскроя металлических заготовок значительной толщины.

Из геометрической оптики известно, что диаметр пятна света в фокусе тем меньше, чем меньше расходимость светового луча, падающего на линзу. Поэтому-то для поставленной нами цели необходимы параллельные лучи света.

И наконец, яркость нужна для того, чтобы создать в фокусе линзы большую удельную мощность.

Ни один из обычных источников света не обладает этими тремя свойствами одновременно. Источники монохроматического света маломощны, а мощные источники света, такие, как, например, электрическая дуга, имеют большую расходимость.

Однако в 1960 г. советские ученые - физики лауреаты Ленинской и Нобелевской премий Н. Г. Басов и А. М. Прохоров одновременно с лауреатом Нобелевской премии американским физиком Ч. Таунсом создали источник света, обладающий всеми необходимыми свойствами. Его назвали лазер, сокращенно от первых букв английского определения принципа его работы: light amplification by stimulated emission of radiation, т. е. усиление света с помощью стимулированного излучения. Другое название лазера - оптический квантовый генератор (сокращенно ОКГ).

Известно, Что всякое вещество состоит из атомов, а сам атом состоит из ядра, окруженного электронами. В обычном состоянии, которое называется основным, электроны так расположены вокруг ядра, что их энергия минимальна. Чтобы вывести электроны из основного состояния, необходимо сообщить им извне энергию, например осветить. Поглощение электронами энергии происходит не непрерывно, а отдельными порциями - квантами (см. т. 3 ДЭ, ст. "Волны и кванты"). Поглотившие энергию электроны переходят в возбужденное состояние, которое является неустойчивым. Через некоторое время они вновь возвращаются в основное состояние, отдавая поглощенную энергию. Этот процесс происходит не одномоментно. При этом оказалось, что возврат одного электрона в основное состояние и выделение- им при этом кванта света ускоряет (стимулирует) возврат в основное состояние других электронов, которые также выделяют кванты, и притом точно такие же по частоте и длине волны. Таким образом, мы получаем усиленный монохроматический луч.

Принцип работы светолучевого станка рассмотрим на примере ОКГ из искусственного рубина. Этот рубин получен синтетическим путем из окиси алюминия, в которой небольшое число атомов алюминия замещено атомами хрома.

В качестве внешнего источника энергии применяется импульсная лампа 1, подобная той, что используют для вспышки при фотографировании, но значительно более мощная. Источником питания лампы служит конденсатор 2. При излучении лампы атомы хрома, находящиеся в рубине 3, поглощают кванты света с длинами волн, которые соответствуют зеленой и синей частям видимого спектра, и переходят в возбужденное состояние. Лавинообразный возврат в основное состояние достигается с помощью-параллельных зеркал 4. Выделившиеся кванты света, соответствующие красной части спектра, многократно отражаются в зеркалах и, проходя через рубин, ускоряют возврат всех возбужденных электронов в основное состояние. Одно из зеркал делается полупрозрачным, и через него луч выводится наружу. Этот луч имеет очень малый угол расхождения, так как состоит из квантов света, многократно отраженных и не испытавших существенного отклонения от оси квантового генератора (см. рис. на стр. 267).

Такой мощный монохроматический луч с малой степенью расходимости фокусируется линзой 5 на обрабатываемую поверхность и дает чрезвычайно маленькое пятно (диаметром до 5-10 мкм). Благодаря этому достигается колоссальная удельная мощность, порядка 10 12 -10 16 Вт/см 2 . Это в сотни миллионов раз превышает мощность, которую можно получить при фокусировании солнечного света.

Такой удельной мощности достаточно, чтобы в зоне фокусного пятна в тысячные доли секунды испарить даже такой тугоплавкий металл, как вольфрам, и прожечь в нем отверстие.

Сейчас светолучевые станки широко применяются в промышленности для получения отверстий в часовых камнях из рубина, алмазах и твердых сплавах, в диафрагмах из тугоплавких труднообрабатываемых металлов. Новые станки позволили в десятки раз повысить производительность, улучшить условия труда и в ряде случаев изготавливать такие детали,. которые другими методами получить невозможно.

Лазер не только производит размерную обработку микроотверстий. Уже созданы и успешно работают светолучевые установки для резания изделий из стекла, для микросварки миниатюрных деталей и полупроводниковых приборов и др.

Лазерная технология, в сущности, только появилась и на наших глазах становится самостоятельной отраслью техники. Можно не сомневаться, что с помощью человека лазер в ближайшие годы "освоит" десятки новых полезных профессий и станет трудиться в цехах заводов, лабораториях и на стройках наравне с резцом и сверлом, электрическими дугой и разрядом, ультразвуком и электронным лучом.

Электроннолучевая обработка

Задумаемся над проблемой: каким образом крохотный участок поверхности - квадратик со стороной 10 мм - из весьма твердого материала разрезать на 1500 частей? С такой задачей повседневно встречаются те, кто занят изготовлением полупроводниковых приборов - микродиодов.

Эта задача может быть решена с помощью электронного луча - ускоренных до больших энергий и сфокусированных в остронаправленный поток электронов.

Обработка материалов (сварка, резание и т. п.) пучком электронов совсем новая область техники. Она родилась в 50-х годах нашего века. Возникновение новых методов обработки, разумеется, не случайно. В современной технике приходится иметь дело с очень твердыми, труднообрабатываемыми материалами. В электронной технике, например, применяются пластинки из чистого вольфрама, в которых необходимо просверлить сотни микроскопических отверстий диаметром в несколько десятков микрометров. Искусственные волокна изготовляют с помощью фильер, которые имеют отверстия сложного профиля и столь малые, что волокна, протягиваемые через них, получаются значительно тоньше человеческого волоса. Электронной промышленности нужны керамические пластинки толщиной 0,25 мм. На них должны быть сделаны прорези шириной 0,13 мм, при расстоянии между их осями 0,25 мм.

Старой технологии обработки такие задачи не по плечу. Поэтому ученые и инженеры обратились к электронам и заставили их выполнять технологические операции резания, сверления, фрезерования, сварки, выплавки и очистки металлов. Оказалось, что электронный луч обладает заманчивыми для технологии свойствами. Попадая на обрабатываемый материал, он в месте воздействия способен нагреть его до 6000° С (температура поверхности Солнца) и почти мгновенно испарить, образовав в материале отверстие или углубление. В то же время современная техника позволяет довольно легко, просто и в широких пределах регулировать энергию электронов, а следовательно, и температуру нагрева металла. Поэтому поток электронов может быть использован для процессов, которые требуют различных мощностей и протекают при самых разных температурах, например для плавки и очистки, для сварки и резания металлов и т. п.

Электронный луч способен прорезать даже в самом твердом металле тончайшее отверстие. На рисунке: схема электронной пушки.

Чрезвычайно ценно также, что действие электронного луча не сопровождается ударными нагрузками на изделие. Особенно это важно при обработке хрупких материалов, таких, как стекло, кварц. Скорость обработки на электроннолучевых установках микроотверстий и очень узких щелей существенно выше, чем на обычных станках.

Установки для обработки электронным лучом -это сложные устройства, основанные на достижениях современной электроники, электротехники и автоматики. Основная их часть - электронная пушка, генерирующая пучок электронов. Электроны, вылетающие с подогретого катода, остро фокусируются и ускоряются специальными электростатическими и магнитными устройствами. Благодаря им электронный луч может быть сфокусирован на площадке диаметром менее 1 мкм. Точная фокусировка позволяет достигать и огромной концентрации энергии электронов, благодаря чему можно получить поверхностную плотность излучения порядка 15 МВт/мм 2 . Обработка ведется в высоком вакууме (остаточное давление примерно равно 7 МПа). Это необходимо, чтобы создать для электронов условия свободного, без помех, пробега от катода до заготовки. Поэтому установка снабжена вакуумной камерой и вакуумной системой.

Обрабатываемое изделие устанавливают на столе, который может двигаться ло-горизонтали и вертикали. Луч благодаря специальному отклоняющему устройству также может перемещаться на небольшие расстояния (3-5 мм). Когда отклоняющее устройство отключено и стол неподвижен, электронный луч может просверлить в изделии отверстие диаметром 5-10 мкм. Если включить отклоняющее устройство (оставив стол неподвижным), то луч, перемещаясь, будет действовать как фреза и сможет прожигать небольшие пазы различной конфигурации. Когда же нужно "отфрезеровать" более длинные пазы, то перемещают стол, оставляя луч неподвижным.

Интересна обработка материалов электронным лучом с помощью так называемых масок. В установке на подвижном столике располагаю* маску. Тень от нее в уменьшенном масштабе проектируется формирующей линзой на деталь, и электронный луч обрабатывает поверхность, ограниченную контурами маски.

Контролируют ход электронной обработки обычно с помощью оптического микроскопа. Он позволяет точно установить луч до начала обработки, например резания по заданному контуру и наблюдать за процессом. Электроннолучевые установки часто оснащаются программирующим устройством, которое автоматически задает темп и последовательность операций.

Обработка токами высокой частоты

Если тигель с помещенным в нем куском металла обмотать несколькими витками провода и пустить по этому проводу (индуктору) переменный ток высокой частоты, то металл в тигле начнет нагреваться и через некоторое время расплавится. Такова принципиальная схема применения токов высокой частоты (ТВЧ) для нагрева. Но что при этом происходит?

Например, разогреваемое вещество - проводник. Переменное магнитное поле, которое появляется при прохождении переменного тока по виткам индуктора, заставляет электроны свободно двигаться, т. е. порождает вихревые индукционные токи. Они и разогревают кусок металла. Диэлектрик же разогревается за счет того, что магнитное поле колеблет в нем ионы и молекулы, "раскачивает" их. А ведь вы знаете, что чем быстрее движутся частицы вещества, тем выше его температура.

Принципиальная схема действия установки для нагрева изделий токами высокой частоты.

Для высокочастотного нагрева сейчас наиболее широко применяются токи с частотой от 1500 Гц до 3 ГГц и выше. При этом нагревательные установки, использующие ТВЧ, нередко имеют мощность в сотни и тысячи киловатт. Их конструкция зависит от размеров и формы нагреваемых объектов, от их электрического сопротивления, от того, какой нагрев требуется - сплошной или частичный, глубокий или поверхностный, и от других факторов.

Чем больше размеры нагреваемого объекта и чем выше электрическая проводимость материала, тем более низкие частоты можно применять для нагрева. И наоборот, чем меньше электрическая проводимость, чем меньше габариты нагреваемых деталей, тем более высокие частоты необходимы.

Какие же технологические операции в современной промышленности осуществляются с помощью ТВЧ?

Прежде всего, как мы уже говорили, плавка. Высокочастотные плавильные печи сейчас работают на многих предприятиях. В них выплавляют высококачественные сорта стали, магнитные и жаростойкие сплавы. Часто плавка производится в разреженном пространстве - в глубоком вакууме. При вакуумной плавке получаются металлы и сплавы наивысшей чистоты.

Вторая важнейшая "профессия" ТВЧ - закаливание металла (см. ст. "Защита металла").

Многие важные детали автомобилей, тракторов, металлорежущих станков и других машин и механизмов теперь закаливаются токами высокой частоты.

Нагрев ТВЧ позволяет получить высококачественную скоростную пайку различными припоями.

ТВЧ нагревают стальные заготовки для обработки их давлением (для штамповки, ковки, накатки). При нагреве ТВЧ не образуется окалины. Это экономит металл, увеличивает срок службы штампов, улучшает качество поковок. Облегчается и оздоровляется труд рабочих.

До сих пор мы говорили о ТВЧ в связи с обработкой металлов. Но этим не ограничивается круг их " деятельности ".

Очень широко применяются ТВЧ и для обработки таких важных материалов, как пластмассы. На заводах пластмассовых изделий в установках ТВЧ нагревают заготовки перед прессованием. Хорошо помогает нагрев ТВЧ при склеивании. Многослойные небьющиеся стекла с пластмассовыми прокладками между слоями стекла изготавливают при нагреве ТВЧ в прессах. Так же, кстати, нагревают древесину при изготовлении древесностружечных плит, некоторые сорта фанеры и фасонные изделия из нее. А для сварки швов в изделиях из тонких листов пластмасс применяют специальные машины ТВЧ, напоминающие швейные. Этим способом изготавливают чехлы, футляры, коробки, трубы.

Последние годы все шире применяется нагрев ТВЧ в стекольном производстве - для сварки различных стеклянных изделий (труб, пустотелых блоков) и при варке стекла.

Нагрев ТВЧ имеет большие преимущества перед другими методами нагрева еще и потому, что в ряде случаев основанный на нем технологический процесс лучше поддается автоматизации.

На предприятиях общественного питания применяются следующие основные способы тепловой обработки продуктов: варка и жаренье. Используются также комбинированные и вспомогательные приемы тепловой обработки, в которых сочетается несколько основной способов.

Варка – это нагревание продуктов в жидкости. Варка бывает:

1. Основным способом; (в большом количестве воды).

2. Припускание; (в небольшом количестве воды под крышкой).

3. Варка на пару; (в специальных шкафах или на решетках).

Жаренье – это нагревание продукта без жидкости в различных количествах жира.

Жаренье бывает:

1. Основным способом; (в небольшом количестве жира).

2. Во фритюре; (в большом количестве жира).

3. В жарочном шкафу; (в специальных шкафах при температуре 270).

4. На гриле (жаренье на открытом огне).

КОМБИНИРОВАННЫЕ СПОСОБЫ ТЕПЛОВОЙ ОБРАБОТКИ.

1. Тушение – это обжаривание продукта до золотистой корки, а затем припускание с добавление специй.

2. Запекание – варенные, жаренные, припущенные или сырые полуфабрикаты заливают соусом запекают в жарочном шкафу.

3. Брезирование – это припускание мяса в концентрированном бульоне, а затем обжаривание в жарочном шкафу.

4. Варка с последующем обжариванием – продукт сначала валяют, затем обжаривают.

ВСПОМОГАТЕЛЬНЫЕ СПОСОБЫ ТЕПЛОВОЙ ОБРАБОТКИ.

1. Опаливание – применяют для первичной обработки птицы, говяжьих, бараньих, свиных и телячьих ног (на газовых горелках).

2. Бланширование – закладка продуктов на несколько минут в кипяченую воду.

3. Пассирование – обжаривание продуктов в небольшом количестве жира и пассирование.

Технологический процесс приготовления блюда начинается не с тепловой обработки, а с поступления туш забитых животных на предприятия общественного питания. Мясо поступает остывшим, охлажденным и мороженным. Остывшее мясо – это то, которое после разделки туши на бойне остывало в естественных условиях или остывочные камерах не менее 6 часов. Мясо, охлажденное до температуры в толще мышцы + 4-0, называется охлажденным. Мясо, искусственно замороженное до температуры в толще мышцы не выше – 6 называют мороженным. В зависимости от упитанности говядину и баранину разделяют на две категории, а свинину на жирную – (толщина шпига более 4 см.) и мясную (толщина щпига от 1,5 до 2 см). Мясо поросят разделяют на две категории. К первой категории относятся молочные поросята весом от 1,3 до 5 кг., ко второй относят – весом от 5 до 12 кг.

Технологический процесс обработки мяса на предприятиях общественного питания состоит из следующих операций:

1. Оттаивание.

2. Обмывание и обсушивание.

3. Разделывание туш.

4. Изготовление полуфабрикатов.

Мороженое мясо оттаивает целиком, повесив тушу на крючья, или уложив штабелями на решетки в специальных камерах – дефростерах. Или в камерах при температуре +4 +6 в течение 3 – 5 суток. Медленное оттаивание мяса позволяет свести до минимума потери мясного сока почти полностью сохранить вкусовые качества продукта. Предварительная обработка мяса заключается, прежде всего, в его тщательной промывке. Мясо следует мыть быстро под струей проточной воды, причем моется весь кусок, предназначенный для обработки. Нельзя мыть мясо после того, как оно уже нарезано, так как при этом загрязнение переносится с поверхности внутрь мяса, сначала руками, а затем со струей воды. Если мясо моется мелкими кусками, особенно после удаления костей, это вызывает потерю соков, а тем самым снижение пищевой ценности мяса. По той же причине мясо не следует вымачивать, так как при этом растворимые в воде белки, минеральные вещества и витамины группы В переходят в воду. Промытое мясо следует обсушить. Обсушивают мясо на решетках или льняными салфетками. Обсушенное мясо разделывают в несколько этапов. В начале тушу разрубают на четвертины. Затем, каждую четвертину делят на части. Передняя четвертина говяжьей туши делится на лопатку (плечевая и заплечевая часть), шею, спино-грудную часть. Заднюю четвертину туши, отделив вырезку (подвздошную мышцу), делят на заднетазовую и поясничную части. Свиные, телячье и бараньи туши предварительно отделив вырезку, разрубают поперек на две половины – переднюю и заднюю. Переднюю половину делят: лопатку, шею, корейку, грудинку; заднюю – на два окорока.

После этого отделяют мышечную, соединительную и жировую ткани от костей. Эта операция называется обвалкой. Затем части мяса зачищают от сухожилий и пленок, удаляют хрящи.

Излишнее количество жира следует удалить, оставив слой два – три миллиметра, так как жир препятствует чрезмерному выпариванию и способствует сохранению сочности мяса. Затем отрезают края, выравнивают куски, подавая им более или менее одинаковую толщину и форму. Эта операция называется зачисткой. У оставшихся от обвалки небольших кусков мяса удаляют мелкие кости, сухожилия, хрящи, кровеносные сосуды, жир и пленки. Такая операция называется жиловкой.

Из подготовленных частей мяса готовят различные полуфабрикаты. Но, прежде чем начать готовить полуфабрикаты, необходимо знать, что мясо является, прежде всего, источником белка и нужно постараться сохранить все питательные вещества. В мясе также присутствуют некоторые витамины, главным образом группы В. Пищевая (биологическая) ценность белков мяса, их усваемость довольно высока. Но она в значительной степени зависит от метода кормления убойных животных, части туши, способа хранения и приготовления блюда. Так, например, закладывая мясо для варки в холодную воду, мы теряем много питательных веществ, переходящих в жидкость, в то время как потери значительно меньше, если мясо для варки вложить в горячую воду. Еще меньше потерь при жаренье мяса, однако, этот способ приготовления не всегда желателен. Весьма вредно чрезмерно нагревать мясо, так как при этом в большей степени снижается ценность и усвояемость белков.

ТЕХНОЛОГИЯ ПРИГОТОВЛЕНИЯ ГОРЯЧИХ БЛЮД ИЗ МЯСА

В результате обработки говяжьей туши получаются следующие крупно кусковые полуфабрикаты:

1. Котлетное мясо (мелкие образки, получаются от зачистки мяса, мякоть от шейной части, голяшки, а также покройки от туши 2 категории).

2. Толстый край (спинная часть).

3. Тонкий край (поясничная часть).

4. Части задней ноги (боковая, наружная, верхняя, внутренняя).

5. Лопаточная часть (плечевая и заплечевая).

6. Подлопаточная часть.

7. Грудная часть.

8. Кромка, (от туши 1 категории).

9. Вырезка.

Пищевая ценность и кулинарные свойства крупнокусковых полуфабрикатов из говядины зависят от количества и вида соединительной ткани, содержащейся в мясе. Так, в вырезке, толстом и тонком краях – большой процент этой ткани, поэтому они быстро размягчаются после не продолжительной тепловой обработки (жаренье). Лопатка, боковая и наружняя части задней ноги имеют значительный процент соединительной ткани и требуют продолжительной тепловой обработки – варки или тушения.




Современная посуда и техника позволяют применять в приготовлении пищи все существующие виды тепловой обработки продуктов. Рецепты, публикуемые в сети, сопровождаются пошаговыми фотографиями. Готовить по таким инструкциям несложно даже тем, кто не очень любит это делать. Но опытные хозяйки не всегда раскрывают значение кулинарных терминов, а новичкам для правильного понимания фотоснимков бывает недостаточно. Мы составили небольшой кулинарный словарик, в котором описали как ведущие, так и не самые популярные, но от этого не менее важные, виды тепловой обработки.




– непродолжительная по времени (от 0,5 до 5 минут) обработка продукта паром или кипятком, которая используется для сохранения цвета овощей, придания белизны мясу и косточкам, удаления горечи или запаха, снятия кожицы с томатов.

Брезерование – тушение на плите или в духовке, но не в воде, как обычно, а в жирном бульоне.

Варка
– приготовление продукта полным погружением в нагретую жидкость (воду, молоко, соки, отвары). Варка на пару – приготовление в парообразной среде, очень деликатный вид тепловой обработки, при котором можно сберечь значительную часть витаминов и микроэлементов.




Жарка (жарение) – разновидность термической обработки, при которой продукты готовятся на дне раскаленной посуды, смазанной тонким слоем жира. Жарение во фритюре – продукт полностью погружается в жир.

Запекание – обработка в печи, духовом шкафу или золе при равно высокой температуре со всех сторон; один из самых древних кулинарных приемов.

Колерование – кулинарный прием, применяемый для придания блюду красивого внешнего вида, а также для изменения цвета (например, смазывание пирожков яйцом или сладким черным чаем на заключительной стадии запекания). Также колерованием называется введение красящих веществ в желе.

Пассерование – обжаривание овощей в жиру, который при температуре 120° выделяет ароматические и красящие вещества. Иногда пассеруют муку, чтобы она не образовывала комочков во время приготовления соусов.




– вид тепловой обработки, варка в собственном соку или минимальном количестве жидкости.

Прокаливание масла – этап, предшествующий жарке. Во время него масло освобождается от вредных примесей (однако важно помнить, что не каждое масло в принципе годится для готовки при высоких температурах, но об этом читайте в другой статье)

Распускание – доведение твердого вещества (жира, сахара) до жидкого состояния.




– неторопливое остывание уже приготовленных продуктов (например, каши в печи, мультиварке).

Тушение
– длительный процесс, при котором продукты готовятся в небольшом количестве жира и жидкости обязательно под закрытой крышкой. Вкусоароматические вещества добавляются в самом конце тушения.

А что означает фламбирование? Давайте узнаем из .

Это удивительно, но, расширив свой поварской арсенал знанием всего трех-пяти видов тепловой обработки, вы сможете создавать огромное количество блюд из ваших любимых продуктов. Вспомните фильм «Девчата»:
- Картошка жареная, отварная, пюре. Дальше: картофель-фри, картофель-пай.
- Это еще что такое?
- А это такими стружечками, жарится в кастрюле в кипящем масле.
- Ну, так бы и говорила, а то - пай! Ну и все!
- Нет не все! Пожалуйста: картофельные пирожки с мясом, с грибами, с капустой и так далее. Картофельные оладьи, соус грибной, соус томатный, соус сметанный и так далее. Картофельный рулет, запеканка, картофель тушеный с черносливом, картофель тушеный с лавровым листом и с перцем, картофель молодой отварной с укропом. Шаники!..



error: Контент защищен !!