Предмет органической химии. Органические вещества — Гипермаркет знаний

Эти термины родились свыше четырёхсот лет назад. Тогдашние химики были уверены, что живые и неживые организмы состоят из разного набора веществ: первые – из органических, вторые из неорганических («минеральных»). Позднее стало ясно, что между живым и неживым нет непроходимой пропасти. Тем не менее, традиционное деление веществ на две большие группы осталось, хотя и потеряло прежний смысл.

Теперь органические вещества чаще всего определяют так: соединения, в состав которых входит углерод. Все прочие «по умолчанию» относят к неорганическим (минеральным). Чёткой грани между двумя группами не провести, потому что хватает исключений. Мы о них скажем ниже.

Кроме того, далеко не все вещества, именуемые органическими, входят в тела живых организмов. С другой стороны, в их составе всегда есть неорганика – вода, минеральные соли. Всё это может сбивать с толку несведущих в химии.

В общем, неудивительно, что Международный союз чистой и прикладной химии (ИЮПАК) не предлагает официального определения неорганических или органических соединений.

А споры продолжаются

Многие вещества, в которых входит углерод, химики традиционно отказываются считать органическими или спорят, куда их относить. Это угольная (карбонатная) и цианидная (синильная) кислоты и их соли, простые оксиды углерода (в том числе, всем известный углекислый газ), соединения углерода с серой, кремнием, карбиды и другие. А ведь есть ещё простые вещества, состоящие только из углерода – древесный и ископаемый уголь, кокс, сажа, графит и ещё пара десятков веществ.


Но, в общем, сложившееся деление на «органику» и «неорганику» сохраняется. Хотя бы потому, что, несомненно, помогает ориентироваться в мире веществ и осваиваться в нём новичкам.

Почему углерод?

Действительно, отчего из более, чем сотни химических элементов, только углерод оказался способным образовать миллионы веществ? Основных причин две: атомы углерода способны соединяться со атомами множества других элементов (водорода, кислорода, серы, фосфора и многих других) и друг с другом. В последнем случае образуются цепочки какой угодно длины и самой разнообразной конструкции – линейные, разветвлённые, замкнутые.

В результате число природных и синтезированных органических веществ исчисляется примерно 27 миллионами, а неорганических приближается всего лишь к полумиллиону. Как говорится, почувствуйте разницу.

Во всём нужен порядок

Неорганические вещества обычно подразделяют на простые и сложные. Первые состоят из одинаковых атомов. Атомы разных элементов образуют сложные вещества: оксиды, гидроксиды, кислоты, соли. Возможны и другие подходы. Например, классифицировать на основе одного из элементов: соединения железа, соединения хлора.

У органических веществ классов побольше. По составу и строению их обычно подразделяют на белки, аминокислоты, липиды, жирные кислоты, углеводы, нуклеиновые кислоты. На базе их биологического действия органические соединения можно группировать в алкалоиды, ферменты, витамины, гормоны, нейромедиаторы и др.

Классификация предполагает и «называние». Само собой, разные соединения должны всегда носить разные имена и при этом желательно, чтобы по имени можно было судить о самом веществе. Но когда речь идёт о миллионах разных названий… Как вам такое: (6E,13E)-18-бромо-12-бутил-11-хлоро-4,8-диэтил-5-гидрокси-15-метокситрикоза-6,13-диен-19-ин-3,9-дион? Оно составлено по всем официальным правилам органической химии.


Ясно, что самые длинные слова надо искать именно в мире органики. В русском языке рекордсменом считают словечко «тетрагидропиранилциклопентилтетрагидропиридопиридиновое» (55 букв!). Но это далеко не предел. В наших мышцах есть белок титин, полное химическое название которого в английском варианте состоит из 189 819 букв и произносится примерно три с половиной часа. Надеемся, вы не обидитесь, если мы публиковать его здесь не будем.

Изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особая «жизненная сила» - vis Vitalis, которая действует только в живых организмах, а химики способны всего лишь выделять органические вещества из продуктов.

Шведский химик, президент Королевской шведской Академии наук. Научные исследования охватывают все главные проблемы общей химии первой половины XIX в. Экспериментально проверил и доказал достоверность законов постоянства состава и кратных отношений применительно к неорганическим оксидам и органическим соединениям. Определил атомную массу 45 химического элемента. Ввел современные обозначения химических элементов и первые формулы химических соединений.

Шведский химик Й. Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы». Именно Берцелиус ввел понятия органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» - витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ - дициана и воды:

N=- C-С=N + 4Н 2 0 -> СООН + 2NН 3
СООН
дициан щавелевая кислота

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата аммония, получил мочевину - продукт жизнедеятельности животных организмов:


Изумленный таким результатом, Вёлер написал Берцелиусу: «Должен сказать Вам, что я умею приготовить мочевину, не нуждаясь ни в почке, ни в животном организме вообще...»

Вёлер Фридрих (1800--1882}

Немецкий химик. Иностранный член Петербургской Академии наук (с 1853 г.). Его исследования посвящены как неорганической, так и органической химии. Открыл циановую кислоту (1822), получил алюминий (1827), бериллий и иттрий (1828).

В последующие годы блестяшие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Бер^о (1854), сахаристых веществ А. Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

«Органическая химия есть химия углеводородов и их производных, т. е. продуктов, образующихся при замене водорода другими атомами или группами атомов».

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах... Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях... Ни в одном из элементов... способности к усложнению не развито в такой степени, как в углероде... Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) - в растения (фотосинтез), из растений - в животные организмы, из живого - в мертвое, из мертвого - в живое... (рис. 1).

Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1. Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических - почти 18 млн (табл. 1).


Рис. 1. Круговорот углерода в природе

2. В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3. Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводы, нуклеиновые кислоты и т. д.

4. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам - гомологов.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность СН 2 .

Таблица 1. Рост числа известных органических соединений

5. Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причина различий в свойствах изомеров?

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т. е. одинаковой молекулярной формулой.

Величайшим обобщением знаний о неорганических веществах является Периодический закон и Периодическая система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служит теория строения органических соединений А. М. Бутлерова . Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления>>. В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни. В любом организме в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т. е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и т. д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно, а неорганические соединения - ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу - гомологическую разницу CH 2 . Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми (циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН 3 -СН 2 -СН 2 -СН 3 (бутан)

СН 3 -СН(СН 3)-СН 3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.


Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол

(о -ксилол)

1,3-диметилбензол мета -ксилол

(м -ксилол)

1,4-диметилбензол пара -ксилол

(п -ксилол)

винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,

древесный спирт

CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол

(гидроксибензол)

карболовая кислота
1-гидрокси-2-метилбензол орто -крезол

-крезол)

1-гидрокси-3-метилбензол мета -крезол

-крезол)

1-гидрокси-4-метилбензол пара -крезол

(п -крезол)

фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота

(соли и сложные эфиры — формиаты)

(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота

(соли и сложные эфиры — пропионаты)

C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота

(соли и сложные эфиры — пальмитаты)

C 17 H 35 COOH октадекановая кислота стеариновая кислота

(соли и сложные эфиры — стеараты)

пропеновая кислота акриловая кислота

(соли и сложные эфиры — акрилаты)

HOOC-COOH этандиовая кислота щавелевая кислота

(соли и сложные эфиры — оксалаты)

1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,

метиловый эфир мурвьиной кислоты

CH 3 COOCH 3 метилэтаноат метилацетат,

метиловый эфир уксусной кислоты

CH 3 COOC 2 H 5 этилэтаноат этилацетат,

этиловый эфир уксусной кислоты

CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,

метиловый эфир акриловый кислоты

Азотсодержащие соединения
аминобензол,

фениламин

анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,

аминоуксусная кислота

2-аминопропионовая кислота аланин


error: Контент защищен !!