Вегетативная нервная система регулирует. Функции вегетативной нервной системы

Вегетати́вная не́рвная систе́ма (от лат. vegetatio - возбуждение, от лат. vegetativus - растительный), ВНС , автономная нервная система , ганглионарная нервная система (от лат. ganglion - нервный узел), висцеральная нервная система (от лат. viscera - внутренности), органная нервная система, чревная нервная система, systema nervosum autonomicum (PNA) - часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система - отдел нервной системы, регулирующий деятельность внутренних органов, желез внутренней и внешней секреции, кровеносных и лимфатических сосудов . Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров .

В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.

Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.

Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.

Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность. Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.

Под контролем автономной системы находятся органы кровообращения , дыхания , пищеварения , выделения , размножения , а также обмен веществ и рост . Фактически эфферентный отдел ВНС осуществляет нервную регуляцию функций всех органов и тканей, кроме скелетных мышц, которыми управляет соматическая нервная система .

Расположение ганглиев и строение проводящих путей

Нейроны ядер центрального отдела вегетативной нервной системы - первые эфферентные нейроны на пути от ЦНС (спинной и головной мозг) к иннервируемому органу. Нервные волокна, образованные отростками этих нейронов, носят название предузловых (преганглионарных) волокон, так как они идут до узлов периферической части вегетативной нервной системы и заканчиваются синапсами на клетках этих узлов. Преганглионарные волокна имеют миелиновую оболочку, благодаря чему отличаются беловатым цветом. Они выходят из мозга в составе корешков соответствующих черепных нервов и передних корешков спинномозговых нервов.

Рефлекторная дуга

Строение рефлекторных дуг вегетативного отдела отличается от строения рефлекторных дуг соматической части нервной системы. В рефлекторной дуге вегетативной части нервной системы эфферентное звено состоит не из одного нейрона, а из двух, один из которых находится вне ЦНС . В целом простая вегетативная рефлекторная дуга представлена тремя нейронами.

Первое звено рефлекторной дуги - это чувствительный нейрон, тело которого располагается в спинномозговых узлах и в чувствительных узлах черепных нервов. Периферический отросток такого нейрона, имеющий чувствительное окончание - рецептор, берёт начало в органах и тканях. Центральный отросток в составе задних корешков спинномозговых нервов или чувствительных корешков черепных нервов направляется к соответствующим ядрам в спинной или головной мозг.

Второе звено рефлекторной дуги является эфферентным, поскольку несёт импульсы из спинного или головного мозга к рабочему органу. Этот эфферентный путь вегетативной рефлекторной дуги представлен двумя нейронами. Первый из этих нейронов, второй по счёту в простой вегетативной рефлекторной дуге, располагается в вегетативных ядрах ЦНС . Его можно называть вставочным, так как он находится между чувствительным (афферентным) звеном рефлекторной дуги и вторым (эфферентным) нейроном эфферентного пути.

Эффекторный нейрон представляет собой третий нейрон вегетативной рефлекторной дуги. Тела эффекторных (третьих) нейронов лежат в периферических узлах вегетативной нервной системы (симпатический ствол, вегетативные узлы черепных нервов, узлы внеорганных и внутриорганных вегетативных сплетений). Отростки этих нейронов направляются к органам и тканям в составе органных вегетативных или смешанных нервов. Заканчиваются постганглионарные нервные волокна на гладких мышцах, железа́х и в других тканях соответствующими концевыми нервными аппаратами.

Физиология

Общее значение вегетативной регуляции

Вегетативная нервная система приспосабливает работу внутренних органов к изменениям окружающей среды. ВНС обеспечивает гомеостаз (постоянство внутренней среды организма). ВНС также участвует во многих поведенческих актах, осуществляемых под управлением головного мозга, влияя не только на физическую, но и на психическую деятельность человека.

Роль симпатического и парасимпатического отделов

Симпатическая нервная система активируется при стрессовых реакциях. Для неё характерно генерализованное влияние, при этом симпатические волокна иннервируют подавляющее большинство органов.

Известно, что парасимпатическая стимуляция одних органов оказывает тормозное действие, а других - возбуждающее действие. В большинстве случаев действие парасимпатической и симпатической систем противоположно.

Влияние симпатического и парасимпатического отделов на отдельные органы

Влияние симпатического отдела:

Влияние парасимпатического отдела:

  • На сердце - уменьшает частоту и силу сокращений сердца.
  • На артерии - не влияет в большинстве органов, вызывает расширение артерий половых органов и мозга, сужение коронарных артерий и артерий лёгких.
  • На кишечник - усиливает перистальтику кишечника и стимулирует выработку пищеварительных ферментов.
  • На слюнные железы - стимулирует слюноотделение.
  • На мочевой пузырь - сокращает мочевой пузырь.
  • На бронхи и дыхание - сужает бронхи и бронхиолы, уменьшает вентиляцию лёгких.
  • На зрачок - сужает зрачки.

Нейромедиаторы и клеточные рецепторы

Симпатический и парасимпатический отделы оказывают различное, в ряде случаев противонаправленное влияние на различные органы и ткани, а также перекрёстно влияют друг на друга. Различное воздействие этих отделов на одни и те же клетки связано со спецификой выделяемых ими нейромедиаторов и со спецификой рецепторов, имеющихся на пресинаптических и постсинаптических мембранах нейронов автономной системы и их клеток-мишеней.

Преганглионарные нейроны обоих отделов автономной системы в качестве основного нейромедиатора выделяют ацетилхолин , который действует на никотиновые рецепторы ацетилхолина на постсинаптической мембране постганглионарных (эффекторных) нейронов. Постганглионарные нейроны симпатического отдела, как правило, выделяют в качестве медиатора норадреналин , который действует на адренорецепторы клеток-мишеней. На клетках-мишенях симпатических нейронов бета-1 и альфа-1 адренорецепторы в основном сосредоточены на постсинаптических мембранах (это означает, что in vivo на них действует в основном норадреналин), а аль-2 и бета-2 рецепторы - на внесинаптических участках мембраны (на них в основном действует адреналин крови). Лишь некоторые постганглионарные нейроны симпатического отдела (например, действующие на потовые железы) выделяют ацетилхолин.

Постганглионарные нейроны парасимпатического отдела выделяют ацетилхолин , который действует на мускариновые рецепторы клеток-мишеней.

На пресинаптической мембране постганглионарных нейронов симпатического отдела преобладают два типа адренорецепторов: альфа-2 и бета-2 адренорецепторы . Кроме того, на мебране этих нейронов расположены рецепторы к пуриновым и пиримидиновым нуклеотидоам (P2X-рецепторы АТФ и др.), никотиновые и мускариновые холинорецепторы, рецепторы нейропептидов и простагландинов, опиоидные рецепторы .

При действии на альфа-2 адренорецепторы норадреналина или адреналина крови падает внутриклеточная концентрация ионов Ca 2+ , и выделение норадреналина в синапсах блокируется. Возникает петля отрицательной обратной связи . Альфа-2 рецепторы более чувствительны к норадреналину, чем к адреналину.

При действии норадреналина и адреналина на бета-2 адренорецепторы выделение норадреналина обычно усиливается. Этот эффект наблюдается при обычном взаимодействии с G s -белком, при котором растёт внутриклеточная концентрация цАМФ . Бета-два рецепторы более чувствительны к адреналину. Поскольку под действием норадреналина симпатических нервов из мозгового слоя надпочечников выделяется адреналин, возникает петля положительной обратной связи .

Однако в некоторых случаях активация бета-2 рецепторов может блокировать выделение норадреналина. Показано, что это может быть следствием взаимодействия бета-2 рецепторов с G i/o белками и связывания (секвестирования) ими G s -белков, которое, в свою очередь, предотвращает взаимодействие G s -белков с другими рецепторами .

При действии ацетилхолина на мускариновые рецепторы симпатических нейронов выделение норадреналина в их синапсах блокируется, а при действии на никотиновые рецепторы - стимулируется. Поскольку на пресинаптических мембранах симпатических нейронов преобладают мускариновые рецепторы, обычно активация парасимпатических нервов снижает уровень выделения норадреналина из симпатических нервов.

На пресинаптических мембранах постганглионарных нейронов парасимпатического отдела преобладают альфа-2 адренорецепторы. При действии на них норадреналина выделение ацетилхолина блокируется. Таким образом, симпатические и парасимпатические нервы взаимно ингибируют друг друга.

Развитие в эмбриогенезе

  • Развитие периферической (соматической) и вегетативной нервной системы. Периферическая (соматическая) и вегетативная нервная система развивается из наружного зародышевого листка - эктодермы. Черепные и спинномозговые нервы у плода закладываются очень рано (5-6 нед). Миелинизация нервных волокон происходит позже (у преддверного нерва - 4 мес; у большинства нервов - на 6-7-м месяце).

Спинномозговые и периферические вегетативные узлы закладываются одновременно с развитием спинного мозга. Исходным материалом для них служат клеточные элементы ганглиозной пластинки, её нейробласты и глиобласты, из которых образуются клеточные элементы спинномозговых узлов. Часть их смещается на периферию в места локализации вегетативных нервных узлов

Сравнительная анатомия и эволюция вегетативной нервной системы

У насекомых имеется так называемая симпатическая, или стомодеальная нервная система . В её состав входит фронтальный ганглий, который находится спереди от головного мозга и соединён парными коннективами с тритоцеребрумом. От него отходит непарный фронтальный нерв, тянущийся вдоль спинной стороны глотки и пищевода. Этот нерв соединяется с несколькими нервными ганглиями; отходящие от них нервы иннервируют переднюю кишку, слюнные железы и аорту.

Нервная система человека состоит из нейронов, выполняющих основные её функции, а также вспомогательных клеток, обеспечивающих их жизнедеятельность или работоспособность. Все нервные клетки складываются в особые ткани, располагающиеся в черепе, позвоночнике человека в виде органов головного или спинного мозга, а также по всему телу в виде нервов – волокон из нейронов, которые произрастают одно из другого, многократно переплетаясь, образуя единую нейронную сеть, проникающую в каждый даже самый маленький уголок организма.

По строению и выполняемым функциям принято разделять всю нервную систему на центральную (ЦНС) и периферического отдела (ПНС). Центральная представлена командными и анализирующими центрами, а периферическая – разветвлённой сетью нейронов и их отростков по всему организму.

Функции ПНС по большей части исполнительные, так как её задача доносить информацию для ЦНС от органов или рецепторов, передавать приказы ЦНС к органам, мышцам и железам, а также контролировать выполнение этих приказов.

Периферическая система, в свою очередь, состоит из двух подсистем: соматической и вегетативной. Функции соматического подотдела представлены моторной активностью скелетных и двигательных мышц, а также сенсорикой (сбором и доставкой информации от рецепторов). Ещё соматическая поддерживает постоянный мышечный тонус скелетных мышц. Вегетативная система же имеет более сложные, скорее управленческие функции.

Функции ВНС, в отличие от , заключаются не в простом приёме или передаче информации от органа к мозгу и обратно, а в контроле над бессознательной работой внутренних органов.

Регулирует активность всех внутренних органов, а также от крупных до самых мелких желёз, регулирует работу мышц полых органов (сердце, лёгкие, кишечник, мочевой пузырь, пищевод, желудок и т.п.), а также за счёт управления работой внутренних органов может регулировать весь метаболизм и гомеостаз человека в целом.

Можно сказать, что ВНС регулирует деятельность организма, которую он осуществляет бессознательно, не подчиняясь рассудку.

Строение

Строение не слишком отличается от симпатической, так как она представлена теми же нервами, в конечном итоге ведущими в спинной или непосредственно в головной мозг.

По функциям, которые выполняют нейроны вегетативной части периферической системы, её условно разделяют на три подотдела:

  • Симпатический отдел ВНС представлен нервами из нейронов, возбуждающих деятельность органа или передающих возбуждающий сигнал от специальных центров, расположенных в ЦНС.
  • Парасимпатический отдел устроен точно также, только вместо возбуждающих сигналов приносит органу подавляющие, чем снижает интенсивность его деятельности.
  • Метасимпатический подотдел вегетативного отдела, регулирующий сокращение полых органов, является главным её отличием от соматической и обуславливает её некоторую самостоятельность от ЦНС. Он построен в виде особых микроганглионарных образований – совокупностей нейронов, расположенных непосредственно в контролируемых органах, в виде интрамуральных ганглиев – управляющих сократительной способностью органа нервных узлов, а также нервов соединяющих их между собой и с остальной нервной системой человека.

Деятельность метасимптического подотдела может быть как независимой, так и корректироваться соматической нервной системой при помощи рефлекторного воздействия или гормональнами, а также частично ЦНС, которая управляет эндокринной системой, отвечающей за выработку гормонов.

Нейронные волокна ВНС переплетаются и соединяются с нервами соматической, а затем передают информацию в центральную через основные крупные нервы: спинальные или черепные.

Нет ни одного крупного нерва, который выполнял бы только вегетативные или соматические функции, это разделение происходит уже на более мелком или, вообще, клеточном уровне.

Заболевания, которым она подвержена

Хоть люди и делят нервную систему человека на подотделы, на самом деле она представляет особую сеть, каждая часть которой тесно связана с остальными и зависит от них, а не только обменивается информацией. Заболевания вегетативной части целостной нервной системы являются заболеваниями ПНС в целом и представлены либо невритами, либо невралгиями.

  • Невралгия – воспалительный процесс в нерве, которой не приводит к его разрушению, но без лечения может перейти в неврит.
  • Неврит – воспаление нерва либо его травма, сопровождающееся гибелью его клеток или нарушением целостности волокна.

Неврит, в свою очередь, бывает следующих видов:

  • Мультиневрит, когда поражается очень много нервов сразу.
  • Полиневрит, причиной которого является патологии нескольких нервов.
  • Мононеврит – неврит только одного нерва.

Данные заболевания возникают по причине негативного воздействия непосредственно на ткани нерва, вызванные следующими факторами:

  • Защемление или сдавливание нерва мышцами, опухолями тканей, новообразованиями, разросшимися связками или костями, аневризмами и т.д.
  • Переохлаждение нерва.
  • Травмы нерва или близлежащих тканей.
  • Инфекции.
  • Сахарный диабет.
  • Токсическое поражение.
  • Дегенеративные процессы , например, рассеянный склероз.
  • Недостаток кровообращения.
  • Нехватка каких-либо веществ, например, витаминов.
  • Нарушение метаболизма.
  • Облучение.

При этом, полиневрит или мультиневрит обычно вызывают последние восемь причин.

Помимо невритов и невралгий, в случае ВНС может наблюдаться патологический дисбаланс работы её симпатического отдела с парасимпатическим по причине наследственных отклонений, негативного поражения головного мозга или вследствие незрелости головного мозга, что довольно часто встречается в детском возрасте, когда симпатические и парасимпатические центры начинают по очереди брать верх неравномерно развиваясь, что является нормой и проходит само собой с возрастом.

Поломки центров происходят крайне редко.

Последствия нарушения работы

Последствия нарушений работы ВНС заключаются в ненадлежащем исполнении её функций по регуляции деятельности внутренних органов, а как следствие – к сбою их работы, что как минимум может выразиться в неправильной выделительной деятельности секреторными железами, например, гиперсаливация (слюнотечение), потливость или, наоборот, недостаток пота, покрытие кожи жиром либо недостаток его выработки сальными железами. Последствия нарушения работы ВНС ведут к сбоям деятельности жизненно важных органов: сердца и органов дыхания, но до такого доходит крайне редко. Сильный полиневрит обычно вызывает небольшие комплексные отклонения работы внутренних органов, вследствие чего происходит нарушение метаболизма и физиологического гомеостаза.

Именно скоординированная работа симпатического с парасимпатическим отделов ВНС осуществляет основную работу по регуляции. Нарушение хрупкого равновесия происходит довольно часто по разным причинам и ведёт к изнашиванию либо, наоборот, к угнетению какого-либо органа или их совокупности. В случае с железами, вырабатывающими гормоны, это может привести к не очень неприятным последствиям.

Восстановление функций ВНС

Нейроны, из которых состоит ВНС точно так же не умеют делиться и регенерировать ткани, которые составляют, как клетки других отделов нервной системы человека. Лечение невралгий и невритов является стандартным, оно не отличается при поражении именно вегетативных нервных волокон от поражения соматических нервов ПНС человека.

Восстановление функций происходит по тому же принципу, что в любой нервной ткани путём перераспределения обязанностей между нейронами, а также наращивания новых отростков оставшимися клетками. Иногда возможна безвозвратная потеря каких-либо функций или их сбой, обычно это не ведёт к жизненно важным патологиям, но иногда требует незамедлительного вмешательства. К такому вмешательству относится сшивание повреждённого нерва или установка кардиостимулятора сердца, регулирующего его сокращения вместо метасимпатического подотдела ВНС.

Вегетативная нервная система выполняет ряд функций:

    Управляет деятельностью внутренних органов, кровеносных и лимфатических сосудов, осуществляя иннервацию гладкомышечных клеток и железистого эпителия.

    Регулирует обмен веществ, приспосабливая его уровень к снижению или повышению функции органа. Тем самым осуществляет адаптационно-трофическую функцию, в основе которой лежит транспорт аксоплазмы - процесс непрерывного движения различных веществ от тела нейрона по отросткам в ткани. Одни из них включаются в обмен веществ, другие активируют метаболизм, улучшая трофику ткани.

    Координирует работу всех внутренних органов, поддерживая постоянство внутренней среды организма.

Центры вегетативной нервной системы

Центры вегетативной нервной системы разделяют на сегментарные и надсегментарные (высшие вегетативные центры).

Сегментарные центры располагаются в нескольких отделах центральной нервной системы, где выделяют 4 очага:

    Мезенцефалический отдел в среднем мозге - добавочное ядро (Якубовича), nucleus accessorius, и непарное срединное ядро глазодвигательного нерва (III пара).

    Бульбарный отдел в продолговатом мозге и мосту - верхнее слюноотделительное ядро, nucleus salivatorius superior, промежуточно-лицевого нерва (VII пара), нижнее слюноотделительное ядро, nucleus salivatorius inferior, языкоглоточного нерва (IX пара) и дорсальное ядроблуждающего нерва (X пара), nucleus dorsalis n. vagi.

Оба этих отдела объединяются под названием краниального и относятся к парасимпатическим центрам.

    Тораколюмбальный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 16-ти сегментов спинного мозга (С 8 , Th 1-12 , L 1-3). Они являются симпатическими центрами.

    Сакральный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 3-х крестцовых сегментов спинного мозга (S 2-4) и относятся к парасимпатическим центрам.

Высшие вегетативные центры (надсегментарные) объединяют и регулируют деятельность симпатического и парасимпатического отделов, к ним относятся:

    Ретикулярная формация , ядра которой формируют центры жизненно-важных функций (дыхательный и сосудодвигательный центры, центры сердечной деятельности, регуляции обмена веществ и т.д.). Проекция дыхательного центра соответствует средней трети продолговатого мозга, сосудодвигательного центра - нижней части ромбовидной ямки. Нарушение функции ретикулярной формации проявляется вегетативно-сосудистыми расстройствами (кардио-васкулярные, вазомоторные). Кроме того страдают интегративные функции, которые необходимы для формирования целесообразного адаптивного поведения.

    Мозжечок , принимая участие в регуляции двигательных актов, одновременно обеспечивает эти анимальные функции адаптационно-трофическими влияниями, которые через соответствующие центры приводят к расширению сосудов интенсивно работающих мышц, повышению уровня трофических процессов в последних. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи (скорость заживления ран), сокращение мышц, поднимающих волосы.

    Гипоталамус - главный подкорковый центр интеграции вегетативных функций, имеет существенное значение в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного) и терморегуляции. За счет связей с таламусом он получает разностороннюю информацию о состоянии органов и систем организма, а вместе с гипофизом образует функциональный комплекс - гипоталамо-гипофизарную систему. Гипоталамус в ней выполняет роль своеобразного реле, включающего гипофизарную гормональную цепь в регуляцию различных висцеральных и соматических функций.

    Особое место занимает лимбическая система обеспечивающая интеграцию вегетативных, соматических и эмоциональных реакций.

    Полосатое тело имеет ближайшее отношение к безусловнорефлекторной регуляции вегетативных функций. Повреждение или раздражение ядер полосатого тела вызывает изменение кровяного давления, усиление слюно- и слезоотделения, усиление потоотделения.

Высшим центром регуляции вегетативных и соматических функций, а также их координации является кора полушарий большого мозга . Непрерывный поток импульсов от органов чувств, сомы и внутренних органов по афферентным путям поступает в кору головного мозга и через эфферентную часть вегетативной нервной системы, главным образом через гипоталамус, кора оказывает соответствующее влияние на функцию внутренних органов, обеспечивая адаптацию организма к меняющимся условиям окружающей и внутренней среды. Примером кортиковисцеральной связи может служить изменение вегетативных реакций под влиянием словесных сигналов (через вторую сигнальную систему).

Таким образом, вегетативная нервная система, так же как и вся нервная система, построена по принципу иерархии, подчиненности. Схему организации вегетативной иннервации иллюстрирует рис.1.

Рис. 1 Принцип организации вегетативной нервной системы.

Вегетативная нервная система — неотъемлемая часть периферической нервной структуры, регулирующая работу внутренних органов и систем. Её работа осуществляется рефлекторно и непроизвольно и не контролируется человеком. Люди сознательно не контролируют размер сосудов, частоту пульса или величину давления. Одна из основных функций ВНС — это обеспечение физиологического состояния органов и организма в целом (гомеостаз).

Определение и значение системы

ВНС, состоящая из численных нейронов, отвечает за передачу импульсов от мозга к органам и железам. Считается, что она отвечает за частоту ЧСС, перистальтику кишечника человеческого тела. ВНС способна поддерживать стабильность на фоне влияния внешних, либо внутренних факторов. Вегетативные функции координируют многие процессы, включая:

  • секрецию гормонов;
  • кровоток;
  • дыхание;
  • пищеварение;
  • процессы репродукции и выделения.

ВНС делится на 2 подсистемы: симпатический и парасимпатический отделы (СНС, ПНС). Симпатика, особенности строения и работы:

  • СНС отвечает за ответ организма: «борьба либо бегство»;
  • химические синапсы в зоне ганглиев позволяют симпатическим нейронам связываться с периферическими;
  • для обозначения симпатических элементов применяют термины «пресинаптический», «постсинаптический»: так различают симпатические и периферические элементы;
  • пресимпатические элементы выделяют ацетилхолин;
  • влияние адреналина и норадреналина на адренорецепторы обеспечивает характерную реакцию «борьбы либо бегства».

Строение вегетативной нервной системы уникально. Активация адренорецепторов в организме приводит к каскаду изменений, которые проявляются различной клиникой. Функционал симпатической нервной системы включает:

  • увеличение потообразования;
  • усиление частоты пульса (при этом существенно увеличивается проводимость и снижается рефрактерный период);
  • расширение зрачков;
  • артериальная гипертензия.

Этот отдел, регулирующий работу многих органов, выполняет защитную функцию для организма от нападения. Проявляет общий катаболический эффект. Способен активировать мозг, мышцы, щитовидку, поджелудочную и надпочечники. Отвечает за усиление продукции инсулина, кортизола и гормонов щитовидки. Провоцирует чувство страха, вины, печали, гнева и агрессивности. Система активируется под влиянием гнева, стресса, физического либо психологического переутомления.

Особенности парасимпатической системы

Парасимпатика — система «отдыха и усвоения». Это целиком противоположная система к СНС. Ее деятельность направлена на нормализацию той функции организма, которая активировалась под влиянием симпатики. СНС и ПНС — две части одного целого, только слаженная их работа позволяет организму функционировать полноценно.

Характеристика системы:

  • главным медиатором в регуляции выступает ацетилхолин;
  • стимуляция вызывает выделение ацетилхолина в ганглии;
  • вегетативный отдел при помощи холина стимулирует мускариновые рецепторы органов-мишеней.

Результатом активации этого отдела НС являются:

  • снижение потообразования;
  • усиление перистальтики;
  • уменьшение сердечной проводимости, снижение ЧСС;
  • сужение зрачка;
  • падение давления.

Среди эффектов, относящихся к системе, выделяют:

  • лечение, регенерация и питание;
  • анаболическое влияние;
  • активация печени, почек, поджелудочной железы, селезенки, желудка, кишечника;
  • увеличивает продукцию паратгормона, ферментов железы, желчи;
  • относится активация пищеварения, иммунитета и выделения;
  • вызывает спокойствие, удовлетворение и расслабление;
  • система активируется отдыхом, сном, медитированием, релаксацией, чувством симпатии и любви.

Метасимпатический отдел состоит из самостоятельных образований, способных работать до полной децентрализии.

Проводники и проводимость СНС

ВНС выделяет особые химические проводники. Главными из них являются норадреналин и ацетилхолин. АХ — нейромедиатор. Выделяя его, нервная система отвечает и контролирует работу всех симпатических, постсинаптических и парасимпатических нейронов.

СНС применяет НА (специфический химический посредник). НА и АХ считаются главным «оружием» контроля автономной НС. Кроме нейромедиаторов, в нейронах высвобождаются вазоактивные компоненты. Симпатика работает посредством выделения катехоламинов. Такие рецепторы бывают нескольких видов:

  1. Альфа-1 рецепторы отвечают за сокращение мышц. Это касается артерий, вен, структур ЖКТ и зрачка. Расположены они постсинаптически.
  2. Альфа-2 рецепторы предназначены для связывания адреналина и норадреналина. Этим они минимизируют влияние алльфа-1 рецепторов. Одновременно они способны суживать сосуды (в частности, коронарные), сокращать гладкие мышцы, ингибировать выделение инсулина поджелудочной.
  3. Бета-1 рецепторы вегетативного отдела влияют на сердце, увеличивая сердечный выброс. Это вызывает тахикардию. Параллельно стимулируется работа слюнных желез.
  4. Бета-2 структуры влияют на мышцы и сосуды. Стимуляция подобных рецепторов осуществляется циркуляцией катехоламинов.

Проводимость ПНС

Медиатор системы (ацетилхолин) влияет на холинергические рецепторы. Часть из них расположены в сердце. Стимуляция их приводит к замедлению работы сердца. Другие элементы нервной системы человека находятся по всему телу. Их активация усиливает синтез оксида азота. Это вызывает релаксацию гладкой мускулатуры.

Для понимания работы системы существует её упрощенная схема. Нервы выделяют нейромедиаторы, которые передают нервные сигналы через созданные щели (синапсы). Каждый орган имеет специальные мишени, чувствительные к такому влиянию нейромедиатора. Это позволяет структурам каждого отдела нервной системы оказывать свое влияние на тот или иной орган.

Регуляция в вегетативной нервной системы осуществляется подсознанием человека. Контроль ее совершается при помощи нескольких центров:

  • кора мозга контролирует деятельность гипоталамуса;
  • гипоталамус управляет функциями и активностью элементов вегетативной нервной системой. Кроме того он отвечает за пищеварение, ЧСС, потоотделение;
  • стволовой мозг регулирует дыхание, ЧСС и давление;
  • спинной мозг — по обе стороны от него находится симпатический отдел вегетативной нервной системы.

Рецепторы ВНС

Каждый афферентный нейрон, его дентриты и аксон имеют рецепторные свойства, благодаря которым они являются узкоспециализированными. Они реагируют только на специфические виды раздражителей. Все они реализуются подсознательно, поэтому человек не ощущает этих импульсов. Исключение составляет боль. К таким сенсорным рецепторам относят:

  • фоторецепторы, реагирующие на свет;
  • терморецепторы, чувствительные к температурным перепадам;
  • механорецепторы, что реагируют на растяжение либо давление;
  • хеморецепторы, реагирующие на колебания во внутреннем химическом составе организма (обычно они чувствительны к СО2 и О2).

Автономные либо висцеральные мотонейроны относятся к ганглиям симпатической и парасимпатической систем. Висцеральные элементы СНС способны косвенно иннервировать гладкую мускулатуру артерий и сердца. Вегетативные мотонейроны именуют автономными (из-за их способности функционировать, если питание их нерва существенно повреждено). Они могут ответить на самую слабую стимуляцию.

Симпатическая нервная система, как и вся вегетатика, оказывает контроль над многими функциями тела:

  • легкие — релакация гладкой мускулатуры;
  • ЖКТ — влияние на перистальтику, продукция слюны, управление сфинктером и выделением инсулина;
  • иммунитет;
  • баланс жидкости — сужает артерии почек, сокращают синтез ренина;
  • репродукция;
  • мочевыделительная система под влиянием нервной регуляции расслабляется.

ВНС совершает контроль над расходом энергии (симпатика является посредником таких расходов, парасимпатика — играет общеукрепляющую роль). Здоровье может серьезно ухудшиться при нарушении взаимосвязи этих подвидов ВНС. Может развиться патология (из-за нарушения стабильности в организме).

В норме отделы системы предназначены для противостояния друг другу. Когда активизируется одна из них, другая начинает работать, чтобы вернуть первую на исходную позицию. Поэтому постоянное действие только одного отдела нервной системы приводит к существенному падению тонуса в другом. Это и провоцирует ухудшение здоровья.

Совместная работа обеих систем

Слаженная работа отчетливо заметна в репродуктивной и мочевыделительной системах:

  1. Репродукция. Симпатика стимулирующе действует на продукцию половых клеток и их выделение. Парасимпатика расширяет сосуды. За счет этого возникает эрекция полового члена и клитора.
  2. Мочевыделение. Парасимпатика сокращает пузырь.

Подобные структуры имеют только симпатические волокна. Регуляция их работы заключается в контролировании тонуса симпатических элементов. Усиливая либо ослабевая тонус системы можно добиться контроля над работой таких органов.

Угрожающие ситуации приводят к активизации «эмоционального» мозга. Передняя часть гипоталамуса возбуждает симпатику. При помощи блуждающего нерва, продолговатого мозга происходит изменение деятельности пищеварения, легочной, сердечной и мочевыделительных систем.

Сильный стресс может парализировать симпатическую систему. При этом ее деятельность прекращается полностью. Человек застывает на месте, поскольку не способен двигаться. Нередко наблюдается потеря контроля над мочеиспусканием и дефекацией. Это кратковременное состояние, но оно возможно при любых стрессовых ситуациях.

Неврологи выделяют несколько заболеваний, которые являются результатом сбоя в работе ВНС. При ортостатической гипотензии пациент жалуется на дурноту, обмороки, плохое зрение. Для синдроме Хорнера характерно низкое потоотделение, опущение век. Такая клиника связана с повреждением симпатических нервов, проходящим к лицу.

Синдром Гиршпрунга — врожденная патология, связанная с расширением кишки и тяжелыми запорами. Такая клиника обусловлена отсутствие специфических ганглиев. К обморочным состояниям может привести вазовагальное синкопе. Это явление связано с аномальной реакцией ВНС на триггер.

Синдром Рейно — расстройство, при котором нарушается цвет пальцев ног и рук. Такое явление связано с гиперактивацией СНС, что вызвано стрессом и холодом. Под спинальным шоком понимается тяжелая травма либо повреждение СМ. При этом пациент жалуется на потливость, тяжелую АГ, потерю контроля кишечника. При проявлении симтомов, указывающих на нарушения в вегетативной нервной системе, требуется срочная помощь невролога.

Вегетативная нервная система

Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные» и «двигательные» компоненты. В то время как первые регистрируют показатели внутренней среды, вторые усиливают или тормозят деятельность тех структур, которые осуществляют сам процесс регуляции.

Внутримышечные рецепторы наряду с рецепторами, расположенными в сухожилиях и некоторых других местах, реагируют на давление и растяжение. Все вместе они составляют особого рода внутреннюю сенсорную систему, которая помогает контролировать наши движения.

Рецепторы, участвующие в гомеостазе, действуют иным способом: они воспринимают изменения в химическом составе крови или колебания давления в сосудистой системе и в полых внутренних органах, таких как пищеварительный тракт и мочевой пузырь. Эти сенсорные системы, собирающие информацию о внутренней среде, по своей организации очень сходны с системами, воспринимающими сигналы с поверхности тела. Их рецепторные нейроны образуют первые синаптические переключения внутри спинного мозга. По двигательным путям вегетативной системы идут команды к органам, непосредственно регулирующим внутреннюю среду. Эти пути начинаются со специальных вегетативных преганглионарных нейронов спинного мозга. Такая организация несколько напоминает организацию спинальною уровня двигательной системы.

Основное внимание в этой главе будет уделено тем двигательным компонентам вегетативной системы, которые иннервируют мускулатуру сердца, кровеносных сосудов и кишок, вызывая ее сокращение или расслабление. Такие же волокна иннервируют и железы, вызывая процесс секреции.

Вегетативная нервная система состоит из двух больших отделов - симпатического и парасимпатического . Оба отдела имеют одну структурную особенность, с которой мы раньше не сталкивались: нейроны, управляющие мускулатурой внутренних органов и железами, лежат за пределами центральной нервной системы, образуя небольшие инкапсулированные скопления клеток, называемые ганглиями. Таким образом, в вегетативной нервной системе имеется дополнительное звено между спинным мозгом и концевым рабочим органом (эффектором).

Вегетативные нейроны спинного мозга объединяют сенсорную информацию, поступающую от внутренних органов и других источников. На этой основе они затем регулируют активность нейронов вегетативных ганглиев. Связи между ганглиями и спинным мозгом называются преганглионарными волокнами . Нейромедиатор, используемый для передачи импульсов от спинною мозга к нейронам ганглиев как в симпатическом, так и в парасимпатическом отделах, - это почти всегда ацетилхолин, тот же медиатор, с помощью которого мотонейроны спинного мозга непосредственно управляют скелетными мышцами. Так же как и в волокнах, иннервирующих скелетную мускулатуру, действие ацетилхолина может усиливаться в присутствии никотина и блокироваться кураре. Аксоны, идущие от нейронов автономных ганглиев, или постганглионарные волокна , затем направляются к органам-мишеням, образуя там много разветвлений.

Рис. 63. Симпатический и парасимпатический отделы вегетативной нервной системы, органы, которые они иннервируют, и их воздействие на каждый орган.

Симпатический и парасимпатический отделы вегетативной нервной системы различаются между собой 1) по уровням, на которых преганглионарные волокна выходят из спинного мозга; 2) по близости расположения ганглиев к органам-мишеням; 3) по нейромедиатору, который используют постганглионарные нейроны для регулирования функций этих органов-мишеней. Эти особенности мы сейчас и рассмотрим.

Симпатическая нервная система

В симпатической системе преганглионарные волокна выходят из грудного и поясничного отделов спинного мозга. Ее ганглии расположены довольно близко к спинному мозгу, и к органам-мишеням от них идут очень длинные постганглионарные волокна (см. рис. 63). Главный медиатор симпатических нервов - норадреналин , один из катехоламинов, который служит также медиатором и в центральной нервной системе.

Чтобы понять, на какие органы действует симпатическая нервная система, проще всего представить себе, что происходит с возбужденным животным, готовым к реакции типа «борьбы или бегства». Зрачки расширяются, чтобы пропускать больше света; частота сокращений сердца возрастает, и каждое сокращение становится более мощным, что ведет к усилению общего кровотока. Кровь отливает от кожи и внутренних органов к мышцам и мозгу. Моторика желудочно-кишечной системы ослабевает, процессы пищеварения замедляются. Мышцы, расположенные вдоль воздушных путей, ведущих к легким, расслабляются, что позволяет увеличить частоту дыхания и усилить газообмен. Клетки печени и жировой ткани отдают в кровь больше глюкозы и жирных кислот - высокоэнергетического топлива, а поджелудочная железа получает команду вырабатывать меньше инсулина. Это позволяет мозгу получать большую долю глюкозы, циркулирующей в кровяном русле, так как в отличие от других органов мозг не требует инсулина для утилизации сахара крови. Медиатором симпатической нервной системы, осуществляющей все эти изменения, служит норадреналин.

Существует дополнительная система, которая оказывает еще более генерализованное воздействие, чтобы вернее обеспечить все эти изменения. На верхушках почек сидят, как два небольших колпачка, надпочечники. В их внутренней части - мозговом веществе - имеются особые клетки, иннервируемые преганглионарными симпатическими волокнами. Эти клетки в процессе эмбрионального развития образуются из тех же клеток нервного гребня, из которых формируются симпатические ганглии. Таким образом, мозговое вещество - это компонент симпатической нервной системы. При активации преганглионарными волокнами клетки мозгового вещества выделяют свои собственные катехоламины (норадреналин и адреналин) прямо в кровь для доставки к органам-мишеням (рис. 64). Циркулирующие медиаторы-гормоны - служат примером того, как осуществляется регуляция эндокринными органами (см. с. 89).

Рис. 64. Когда активность симпатического нерва заставляет мозговое вещество надпочечников выделять катехоламины, эти сигнальные вещества разносятся с кровью и оказывают влияние на активность различных тканей-мишеней; таким образом, они обеспечивают согласованный ответ со стороны далеких друг от друга органов.

Парасимпатическая нервная система

В парасимпатическом отделе преганглионарные волокна идут от ствола головного мозга («черепной компонент») и от нижних, крестцовых сегментов спинного мозга (см. выше рис. 63). Они образуют, в частности, очень важный нервный ствол, называемый блуждающим нервом , многочисленные ветви которого осуществляют всю парасимпатическую иннервацию сердца, легких и кишечного тракта. (Блуждающий нерв передает также сенсорную информацию от этих органов обратно в центральную нервную систему.) Преганглионарные парасимпатические аксоны очень длинны, так как их ганглии, как правило, располагаются поблизости или внутри тех тканей, которые они иннервируют .

В окончаниях волокон парасимпатической системы используется медиатор ацетилхолин . Реакция соответствующих клеток-мишеней на ацетилхолин нечувствительна к действию никотина или кураре. Вместо этого ацетилхолиновые рецепторы активируются мускарином и блокируются атропином.

Преобладание парасимпатической активности создает условия для «отдыха и восстановления» организма. В своем крайнем проявлении общий характер парасимпатической активации напоминает то состояние покоя, которое наступает после сытной еды. Повышенный приток крови к пищеварительному тракту ускоряет продвижение пищи через кишечник и усиливает секрецию пищеварительных ферментов. Частота и сила сердечных сокращений снижаются, зрачки сужаются, просвет дыхательных путей уменьшается, а образование слизи в них возрастает. Мочевой пузырь сжимается. Взятые вместе, эти изменения возвращают организм в то мирное состояние, которое предшествовало реакции типа «борьбы или бегства». (Все это представлено на рис. 63; см. также гл. 6.)

Сравнительная характеристика отделов вегетативной нервной системы

Симпатическая система с ее чрезвычайно длинными постганглионарными волокнами сильно отличается от парасимпатической, в которой, наоборот, длиннее преганглионарные волокна, а ганглии расположены вблизи или внутри органов-мишеней. Многие внутренние органы, такие как легкие, сердце, слюнные железы, мочевой пузырь, гонады, получают иннервацию от обоих отделов вегетативной системы (имеют, как говорят, «двойную иннервацию»). Другие ткани и органы, например артерии мышц, получают только симпатическую иннервацию. В целом можно сказать, что два отдела работают попеременно: в зависимости от деятельности организма и от команд высших вегетативных центров доминирует то один, то другой их них.

Эта характеристика, однако, не совсем верна. Обе системы постоянно находятся в состоянии той или иной степени активности. Тот факт, что такие органы-мишени, как сердце или радужная оболочка глаза, могут реагировать на импульсы, идущие от обоих отделов, попросту отражает их взаимодополняющую роль. Например, когда вы сильно сердитесь, у вас поднимается кровяное давление, которое возбуждает соответствующие рецепторы, расположенные в сонных артериях. Эти сигналы воспринимает интегрирующий центр сердечно-сосудистой системы, находящийся в нижней части ствола мозга и известный под названием ядра одиночного тракта . Возбуждение этого центра активирует преганглионарные парасимпатические волокна блуждающего нерва, что приводит к уменьшению частоты и силы сердечных сокращений. Одновременно под влиянием того же координирующего сосудистого центра происходит угнетение симпатической активности, противодействующее повышению кровяного давления.

Насколько существенно функционирование каждого из отделов для адаптивных реакций? Как это ни удивительно, не только животные, но и люди могут переносить почти полное выключение симпатической нервной системы без видимых дурных последствий. Такое выключение рекомендуется при некоторых формах стойкой гипертонии.

А вот без парасимпатической нервной системы обойтись не так-то просто. Люди, перенесшие подобную операцию и оказавшиеся вне охранительных условий больницы или лаборатории, очень плохо адаптируются к окружающей среде. Они не могут регулировать температуру тела при воздействии жары или холода; при кровопотере у них нарушается регуляция кровяного давления, а при любой интенсивной мышечной нагрузке быстро развивается утомление.

Диффузная нервная система кишечника

Недавние исследования выявили существование третьего важного отдела автономной нервной системы - диффузной нервной системы кишечника . Этот отдел ответствен за иннервацию и координацию органов пищеварения. Его работа независима от симпатической и парасимпатической систем, но может видоизменяться под их влиянием. Это дополнительное звено, которое связывает вегетативные постганглионарные нервы с железами и мускулатурой желудочно-кишечного тракта.

Ганглии этой системы иннервируют стенки кишок. Аксоны, идущие от клеток этих ганглиев, вызывают сокращения кольцевой и продольной мускулатуры, проталкивающие пищу через желудочно-кишечный тракт, - процесс, называемый перистальтикой . Таким образом, эти ганглии определяют особенности локальных перистальтических движений. Когда пищевая масса находится внутри кишки, она слегка растягивает ее стенки, что вызывает сужение участка, расположенного чуть выше по ходу кишки, и расслабление участка, находящегося чуть ниже. В результате пищевая масса проталкивается дальше. Однако под действием парасимпатических или симпатических нервов активность кишечных ганглиев может изменяться. Активация парасимпатической системы усиливает перистальтику, а симпатической - ослабляет ее.

Медиатором, возбуждающим гладкую мускулатуру кишечника, служит ацетилхолин . Однако тормозящие сигналы, ведущие к расслаблению, передаются, по-видимому, различными веществами, из которых изучены лишь немногие. Среди нейромедиаторов кишечника имеются по меньшей мере три, которые действуют и в центральной нервной системе: соматостатин (см. ниже), эндорфины и вещество Р (см. гл. 6).

Центральная регуляция функций вегетативной нервной системы

Центральная нервная система осуществляет контроль над вегетативной системой в гораздо меньшей степени, чем над сенсорной или скелетной двигательной системой. Области мозга, которые больше всего связаны с вегетативными функциями, - это гипоталамус и ствол мозга , в особенности та его часть, которая расположена прямо над спинным мозгом, - продолговатый мозг . Именно из этих областей идут основные проводящие пути к симпатическим и парасимпатическим преганглионарным автономным нейронам на спинальном уровне.

Гипоталамус . Гипоталамус - это одна из областей мозга, общая структура и организация которой более или менее сходна у представителей различных классов позвоночных животных.

В целом принято считать, что гипоталамус - это средоточие висцеральных интегративных функций. Сигналы от нейронных систем гипоталамуса непосредственно поступают в сети, которые возбуждают преганглионарные участки вегетативных нервных путей. Кроме того, эта область мозга осуществляет прямой контроль над всей эндокринной системой через посредство специфических нейронов, регулирующих секрецию гормонов передней доли гипофиза, а аксоны других гипоталамических нейронов оканчиваются в задней доле гипофиза. Здесь эти окончания выделяют медиаторы, которые циркулируют в крови как гормоны: 1) вазопрессин , повышающий кровяное давление в экстренных случаях, когда происходит потеря жидкости или крови; он также уменьшает выделение воды с мочой (поэтому вазопрессин называют еще антидиуретическим гормоном ); 2) окситоцин , стимулирующий сокращения матки на завершающей стадии родов.

Хотя среди скоплений гипоталамических нейронов имеется несколько четко отграниченных ядер, большая часть гипоталамуса представляет собой совокупность зон с нерезкими границами (рис. 65). Однако в трех зонах имеются достаточно выраженные ядра. Мы рассмотрим сейчас функции этих структур.

1. Перивентрикулярная зона непосредственно примыкает к третьему мозговому желудочку, который проходит через центр гипоталамуса. Выстилающие желудочек клетки передают нейронам перивентрикулярной зоны информацию о важных внутренних параметрах, которые могут требовать регуляции, - например, о температуре, концентрации солей, уровнях гормонов, секретируемых щитовидной железой, надпочечниками или гонадами в соответствии с инструкциями от гипофиза.

2. Медиальная зона содержит большинство проводящих путей, с помощью которых гипоталамус осуществляет эндокринный контроль через гипофиз. Весьма приближенно можно сказать, что клетки перивентрикулярной зоны контролируют действительное выполнение команд, отданных гипофизу клетками медиальной зоны.

3. Через клетки латеральной зоны осуществляется контроль над гипоталамусом со стороны более высоких инстанций коры большого мозга и лимбической системы. Сюда же поступает сенсорная информация из центров продолговатого мозга, координирующих дыхательную и сердечно-сосудистую деятельность. Латеральная зона - это то место, где высшие мозговые центры могут вносить коррективы в реакции гипоталамуса на изменения внутренней среды. В коре, например, происходит сопоставление информации, поступающей из двух источников - внутренней и внешней среды. Если, скажем, кора сочтет, что время и обстоятельства не подходят для принятия пищи, донесение органов чувств о низком содержании сахара в крови и пустом желудке будет отложено в сторону до более благоприятного момента Игнорирование гипоталамуса со стороны лимбической системы менее вероятно. Скорее эта система может добавить эмоциональную и мотивационную окраску к интерпретации внешних сенсорных сигналов или же сравнить представление об окружающем, основанное на этих сигналах, с аналогичными ситуациями, имевшими место в прошлом.

Рис. 65. Гипоталамус и гипофиз. Схематически показаны основные функциональные зоны гипоталамуса.

Вместе с кортикальным и лимбическим компонентами гипоталамус выполняет также множество рутинных интегрирующих действий, причем на протяжении значительно более длительных периодов времени, чем при осуществлении кратковременных регуляторных функций. Гипоталамус заранее «знает», какие потребности возникнут у организма при нормальном суточном ритме жизни. Он, например, приводит эндокринную систему в полную готовность к действию, как только мы просыпаемся. Он также следит за гормональной активностью яичников на протяжении менструального цикла; принимает меры, подготавливающие матку к прибытию оплодотворенного яйца. У перелетных птиц и у млекопитающих, впадающих в зимнюю спячку, гипоталамус с его способностью определять длину светового дня координирует жизнедеятельность организма во время циклов, длящихся несколько месяцев. (Об этих аспектах централизованной регуляции внутренних функций будет говориться в главах 5 и 6.)

Рис. 66. Здесь схематически представлены различные функции продолговатого мозга. Показаны связи, идущие от различных внутренних органов к стволу мозга и ретикулярной формации. Сенсорные сигналы, исходящие от этих органов, регулируют степень активности и внимания, с которой мозг реагирует на внешние события. Подобные сигналы приводят также в действие специфические программы поведения, с помощью которых организм приспосабливается к изменениям внутренней среды.

Продолговатый мозг. Гипоталамус составляет менее 5% от всей массы мозга. Однако в этом небольшом количестве ткани содержатся центры, которые поддерживают все функции организма, за исключением спонтанных дыхательных движений, регуляции кровяного давления и ритма сердца. Эти последние функции зависят от продолговатого мозга (см. рис. 66). При черепно-мозговых травмах так называемая «смерть мозга» наступает тогда, когда исчезают все признаки электрической активности коры и утрачивается контроль со стороны гипоталамуса и продолговатого мозга, хотя с помощью искусственного дыхания еще можно поддерживать достаточное насыщение циркулирующей крови кислородом.

Из книги Допинги в собаководстве автора Гурман Э Г

3.2. НЕРВНАЯ СИСТЕМА И ПОВЕДЕНИЕ В поведенческом акте участвуют многие системы организма. Он реализуется с помощью аппарата движений, деятельность которого тесно связана с различными функциями организма (дыханием, кровообращением, терморегуляцией и др.). Управление

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Нервная система Как известно, нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы - важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

Центральная нервная система В соответствии со сложной и высокодифференцированной организацией двигательного аппарата находится и сложное строение центральной нервной системы насекомых, которую, однако, мы можем здесь охарактеризовать лишь в самых общих чертах.Как и у

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Высшая нервная деятельность За 20–25 дней до начала опытов была сделана попытка охарактеризовать основные особенности нервных процессов каждой подопытной собаки, для чего проводились обследования с помощью проб, подробно описанных на с. 90 этой книги. В силу

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

9. Нервная система Общие понятия. Нервная система является очень сложной и своеобразной по своему строению и функциям системой организма. Ее назначение - устанавливать и регулировать взаимоотношение органов и систем в организме, связывать все функции организма в

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Глава 10 Нервная система ГипнотизмДругая разновидность заболеваний, которые не подпадают под теорию Пастера, - это заболевания нервной системы. Такие заболевания смущали и пугали человечество испокон веков. Гиппократ подходил к ним рационалистично, однако большинство

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Глава XIII Нервная система Функции У нервной системы живых существ имеются две основные функции. Первая - сенсорное восприятие, благодаря которому мы воспринимаем и постигаем окружающий мир. По центростремительным чувствительным нервам импульсы от всех пяти органов

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

§ 11. Нервная система беспозвоночных У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат

Из книги автора

§ 12. Нервная система позвоночных Нервная система позвоночных построена на принципах вероятностного развития, дублирования, избыточности и индивидуальной изменчивости. Это не означает, что в мозге позвоночных нет места генетической детерминации развития или

Из книги автора

§ 20. Нервная система с радиальной симметрией Наиболее простой вариант строения нервной системы мы встречаем у стрекающих (кишечнополостных). Как уже говорилось выше, их нервная система построена по диффузному типу. Клетки образуют пространственную сеть, которая

Из книги автора

§ 21. Билатеральная нервная система Появление билатеральной симметрии стало переломом в эволюции нервной системы. Это не означает, что билатеральность лучше радиальной симметрии. Скорее наоборот. Из-за того что в далёком прошлом билатеральная симметрия была утрачена, мы

Из книги автора

§ 22. Нервная система членистоногих Организация нервной системы членистоногих и сходных с ними групп может существенно варьировать, но в пределах общего плана строения. Рисунок нервной системы дневной бабочки (Lepidoptera) довольно точно отражает типичное расположение

Из книги автора

§ 23. Нервная система моллюсков Наибольший морфофункциональный контраст представляют собой организация нервной системы головоногих и двустворчатых моллюсков (рис. II-9; II-10, а). У двустворчатых моллюсков есть парные головные, висцеральные и педальные ганглии, соединённые

Из книги автора

§ 43. Нервная система и органы чувств птиц Нервная система птиц состоит из центрального и периферического отделов. Головной мозг птиц крупнее, чем у любых современных представителей рептилий. Он заполняет полость черепа и имеет округлую форму при небольшой длине (см. рис.

Из книги автора

7.5. Нервная ткань Нервная ткань представлена двумя типами клеток: нейронами и нейроглией.Нейроны способны воспринимать раздражение и передавать информацию в виде электрических импульсов. На основе этих свойств нейронов у животных сформировалась нервная система –



error: Контент защищен !!