От чего возникает нарушение периферического кровообращение. Расстройства периферического кровообращения

Периферическое кровообращение: значимость, анатомия, патология, лечение нарушений

Периферическое кровообращение играет важнейшую роль в обеспечении тканей питательными веществами, отведении от них продуктов обмена, доставке кислорода. Сосуды микроциркуляции получают артериальную кровь из легочного круга, а возвращают венозную, насыщенную углекислотой и продуктами катаболизма.

К периферическим сосудам относят мелкие артерии и вены, артериолы и венулы, капилляры микроциркуляторного русла, которые имеют малый диаметр и специфически устроенную стенку, что позволяет проникать сквозь них не только веществам, но и клеткам. Без этого звена микроциркуляции был бы невозможен нормальный обмен веществ и поддержание жизнедеятельности тканей.

Периферический кровоток получает артериальную кровь из более крупных артерий, куда она закачивается сердцем из легких. После прохождения микроциркуляторного русла кровь становится венозной, отправляется в вены, достигает правого желудочка сердца и направляется в легкие для газообмена, который тоже происходит при непосредственном участии мелких артерий и вен.

Помимо обменной функции, микроциркуляция нужна для поддержания температуры тела. В жарком помещении, на солнце организм начинает перегреваться, и тогда мелкие сосуды расширяются и ускоряют испарение жидкости. На холоде происходит обратное: сосуды суживаются, препятствуя испарению и сохраняя тепло.

Периферическое кровообращение заключает в себе основной объем крови человеческого тела, оно влияет на уровень артериального давления и частоту сердцебиений, регулируя их таким образом, чтобы в случае неблагополучия жизненно важные органы получили необходимое им питание.

Расстройства функции периферического кровообращения включают снижение скорости кровотока и , стаз крови, разные виды и малокровие. Эти процессы могут сочетаться между собой, усугубляя и дистрофические процессы в тканях.

Признаки нарушений со стороны периферического кровотока довольно стереотипны и проявляются не только в коже, когда и заподозрить патологию проще, но и во внутренних органах, особенно, имеющих развитую сеть микроциркуляции (печень, почки, легкие, мозг).

Если периферическое кровообращение нарушено, следует искать причину и по возможности ее устранять. Для этого применяют разнообразные лекарственные средства, помогающие нормализовать свертываемость, текучесть крови, ее клеточный состав.

Как устроена система микроциркуляции?

К сосудам, обеспечивающим периферический кровоток, относят:

  • Мелкие артерии и артериолы;
  • Капилляры;
  • Венулы и мелкие вены;
  • Артериоловенулярные анастомозы;
  • Лимфатические сосуды.

Венулы, артериолы, капилляры и анастомозы между ними составляют основное звено микроциркуляции, обеспечивающее обменные процессы. Сосудистое сопротивление, а соответственно и артериальное давление, поддерживается мелкими артериями, артериолами и прекапиллярными сфинктерами. Обмен происходит в капиллярах и посткапиллярных венулах, а емкостную часть кровотока составляют венулы и мелкие вены, заключающие в себе наибольшее количество всей крови человека.

Связь между артериальной и венозной частями системного кровотока осуществляют специальные анастомозы (шунты), включающиеся при неблагополучии. Через анастомозы кровь попадает из артериол сразу в венулы, а микроциркуляция ее недополучает. Такой механизм составляет основу централизации кровообращения, нужной для перенаправления крови в жизненно важные органы (мозг, миокард, почки), что ярко проявляется при шоках.

Артериолы - это мелкие сосуды-предшественники капилляров. Их особенностью считается наличие в стенках гладкомышечных клеток, за счет которых сосуды способны сокращаться и расслабляться, меняя диаметр просвета. Изменение диаметра артериол может происходить как локально, так и во всем организме. Артериолы обеспечивают общее периферическое сопротивление, которое определяет уровень артериального давления.

Капилляры продолжаются в венулы , по которым происходит отток крови от микроциркуляторного русла. Мышечный слой их стенок развит куда хуже, нежели в артериолах, поэтому стенка этих сосудов тоньше и не способна реагировать сильным спазмом в условиях патологии, зато процесс расширения и застоя здесь происходит проще и быстрее.

Промежуточным звеном между артериолой и венулой является капилляр - тончайший сосуд человеческого тела, который и осуществляет обменную роль. Транспорт веществ в ткани и обратно в капилляры возможен благодаря однослойной стенке последних, которая состоит лишь из эндотелия и может иметь множество пор и фенестр (в печени, костном мозге, лимфатической ткани).

Работа периферического кровообращения регулируется нервной и эндокринной системами, зависит от действия вазоактивных метаболитов и других химических веществ. В ответ на возбуждение симпатических нервных волокон сосуды микроциркуляции суживаются из-за действия адреналина и ему подобных метаболитов. Сосудорасширяющие вещества (гистамин) приводят к обратному эффекту.

Расширение периферической сосудистой сети происходит под влиянием парасимпатической нервной системы, основной нейромедиатор в этом случае - ацетилхолин. Кроме нервной регуляции, важнейшую роль в вазодилатации играет гуморальный механизм. Так, гиперкалиемия, избыток натрия и магния, накопление кислых продуктов обмена (ацидоз), медиаторов воспаления (гистамин, брадикинин) провоцирует резкое расширение сосудистой сети, в то время как катехоламины (адреналин), гормон вазопрессин, ангиотензин и другие вещества формируют вазоспазм с уменьшением емкости микроциркуляторного русла.

Гуморальные механизмы реализуются медленнее, чем непосредственное влияние на сосудистые стенки со стороны нервных волокон. Кроме того, венозное русло лучше откликается на нервную регуляцию, чем резистивное артериальное.

Разновидности нарушения периферического кровообращения

К патологии периферического кровообращения относятся:

  1. Замедление или ускорение тока жидкости по сосудам микроциркуляции;
  2. Шунтирование крови с централизацией кровообращения;
  3. Стаз, сладж-феномен и тромбоз;
  4. Плазматическое пропитывание и плазморрагия;
  5. Полнокровие;
  6. Эмболия;
  7. Малокровие.

Ускорение или снижение периферического кровотока обычно отражает компенсаторные реакции, направленные на поддержание обмена в условиях неблагополучия. К примеру, в начале воспаления сосуды расширяются, и транспорт веществ и клеток происходит активнее, а затем кровоток замедляется для локализации очага патологии. При повышении температуры тела, тахикардии, анемии кровообращение тоже идет интенсивнее.

Пороки сердца с его недостаточностью, переохлаждение, полнокровие сопровождаются замедлением кровотока, застоем, выходом жидкой части в межклеточное пространство, формированием отека. Эти процессы отражают уже патологию периферического кровообращения.

Шунтирование крови направлено на снабжение питанием систем жизнеобеспечения - центральной нервной, миокарда, почек. Наиболее ярко этот механизм представлен при шоках, когда кровь сбрасывается из артерий в вены, минуя микроциркуляторное русло. Конечно, периферические ткани оказываются в определенной степени «ущемлены», однако такая вынужденная мера позволяет выжить.

стаз крови в сосудах микроциркуляторного русла

Стаз и сладж-феномен проявляются при нарушении реологических свойств крови, снижении периферического кровотока, метаболических, электролитных расстройствах, тромбозах и полнокровии. Стаз - это остановка кровотока в сосудах микроциркуляции. Он имеет сложный механизм и зависит от целого ряда причин (гемокоагуляция, кровяное давление, шунтирование крови, действие токсинов, воспалительный компонент и др.), но основная из них - повышение агрегации кровяных клеток. Кратковременный стаз обратим, длительный - способствует ишемии и некрозам.

Сладж-феномен - это такое нарушение периферического кровообращения, когда происходит слипание между собой клеток крови, главным образом - эритроцитов, и образование клеточных и белковых агрегатов в просветах мелких сосудов. Он сопутствует стазу, продолжая его, и проявляется при воспалительной реакции, травме, инфекциях, увеличении вязкости крови, венозной и артериальной гиперемии, недостаточности сердца.

Параллельно со стазом, сладжем и расширением сосудов микроциркуляции развиваются плазматическое пропитывание , когда проницаемая сосудистая стенка инфильтрируется компонентами плазмы, и плазморрагия с выходом компонентов крови в окружающее околососудистое пространство. Эти изменения наблюдаются при артериальной гипертензии, системных соединительнотканных заболеваниях, иммунопатологических процессах.


Тромбоз
- это прижизненное свертывание крови в камерах сердца и просветах сосудов с образованием плотных свертков. Главными факторами тромбоза считают травму сосудистой стенки, стаз и повышение агрегации, которые при тромбозе сочетаются.

Тромбообразование наблюдается при варикозной болезни, сердечной недостаточности, аритмиях, воспалении, тяжелых инфекциях, ДВС-синдроме, шоках, наследственной тромбофилии, венозном застое, имплантированных сердечных клапанах и многих других патологических состояниях.

Крупные красные, белые и смешанные свертки образуются чаще в сосудах большого диаметра, тогда как в микроциркуляторном русле значение приобретают так называемые гиалиновые тромбы, состоящие из разрушенных клеточных фрагментов, тромбоцитов и белка фибрина.

Гиалиновые тромбы образуются, главным образом, при диссеминированном внутрисосудистом свертывании, которое происходит при шоках и терминальных состояниях. Блокада периферического кровообращения гиалиновыми тромбами составляет основу острой полиорганной (печеночной, ренальной, дыхательной) недостаточности, способной стать причиной смерти на фоне острых ишемических и некротических процессов в паренхиматозных органах.

Малокровие - это расстройство периферического кровообращения, когда ткани испытывают дефицит артериального снабжения вследствие спазма сосудов, пережатия их из вне (жгут, новообразование, рубец) либо обструкции внутри (тромб, эмбол, жиробелковая бляшка).

При малокровии падает интенсивность кровотока в капиллярах, часть сосудов редуцируется, кровяные клетки перераспределяются, а в сосудах содержится в основном плазма. В паренхиме органов при продолжительной ишемии наблюдаются дистрофические и атрофические явления, разрастается фиброзная ткань, при остром нарушении доставки крови развивается некроз.

Еще одним видом патологии периферического кровообращения является полнокровие , которое бывает артериальным и венозным. Первая разновидность связана с избыточным поступлением артериальной крови в микроциркуляторное русло, вторая - с недостаточным оттоком венозной.

Патологическая артериальная гиперемия характерна для воспалительных процессов, нарастает в ишемизированных тканях после восстановления кровообращения, наблюдается при резком расширении сосудов из-за расстройства нервной регуляции их тонуса, вследствие перераспределения крови.

Венозное полнокровие характеризуется нарушенным оттоком венозной крови по причине тромбообразования, сердечной недостаточности, компрессии вен новообразованием, рубцовой тканью, жгутом. В системе микроциркуляции скапливается венозная кровь, происходит пропотевание жидкости в ткани с развитием отека, в паренхиматозных элементах прогрессирует дистрофия, возможны некрозы. Хроническая венозная гиперемия ведет к уплотнению органов за счет склероза и атрофии.

Эмболия представляет собой циркуляцию в кровотоке элементов, не встречающихся там в норме. Они закупоривают мелкие сосуды и нарушают движение по ним крови. Эмболия бывает жировой (при переломах), газовой, воздушной, тканевой (при опухолях), микробной (в основе сепсиса).

эмболы в кровотоке

Проявления расстройств микроциркуляции

Симптомы нарушения периферического кровообращения зависят от вида патологии, характера течения, скорости развития и компенсаторных возможностей организма. Симптоматика патологии чрезвычайно разнообразна и пытаться ее систематизировать особого смысла нет, ведь ишемия в нервной ткани и ногах будет проявляться неодинаково, тогда как тромбообразование в сосудах микроциркуляции почек и острое венозное полнокровие в них же могут протекать очень схоже.

Общее у всех расстройств периферического кровообращения:

  • Возможность острого или хронического течения;
  • Развитие некрозов, кровоизлияний, отека и, как следствие, боли и нарушения работы органа при остром нарушении микроциркуляции;
  • Преобладание ишемически-дистрофических изменений, атрофии и склероза при хроническом течении.

гиперемия (полнокровие)

Для артериальной гиперемии характерно покраснение участка ткани, увеличение его температуры и размеров из-за отека. Как правило, патологическое артериальное полнокровие сопровождается еще и болью. Эти процессы наглядно можно проследить при воспалении на видимых участках тела. При поражении внутренних органов с явлениями гиперемии пациенты обычно ощущают боль, а другие симптомы связаны с тем заболеванием, которое протекает с этим видом расстройства периферического кровообращения.

Венозный застой сопровождается:

  1. Цианозом (синюшностью) кожи, слизистых оболочек;
  2. В зоне венозной гиперемии снижается температура (холодеют конечности, но не внутренние органы);
  3. Увеличением конечности, внутреннего органа в объеме в связи с отеком;
  4. Болевым синдромом, чувством распирания, на коже - зуд, возможно образование трофических язв;
  5. Внутренние органы: легкие - появление хрипов, возможен кашель и застойная пневмония, печень - увеличение в размере, тяжесть в подреберье, диспепсия, головной мозг - головные боли, нарушение памяти и интеллекта.

ишемия ног

Ишемия (малокровие) может протекать в острой или хронической форме. Ишемические изменения в конечностях сопровождаются болью, быстрой утомляемостью при нагрузке, чувством похолодания, ползания «мурашек», кожные покровы становятся бледными, возможно развитие трофических нарушений вплоть до язв.

В головном мозге ишемия лежит в основе дисциркуляторной энцефалопатии с соответствующей неврологической и психиатрической симптоматикой, а острая ишемия, переходящая в некроз, — основа инфаркта мозга (инсульта) с парезами и параличами.

Ишемия коркового вещества почек, как и тромбообразование в микроциркуляторном русле органа, способствуют некрозу эпителия и развитию острой почечной недостаточности. Хронический венозный застой или длительная ишемия провоцируют склеротические и атрофические изменения с возможным исходом в хроническую недостаточность.

Лечение патологии периферического кровообращения

Характер лечения при нарушениях периферического кровообращения зависит от причины патологии и изменений, которые ей сопутствуют. При обструкции сосудов микроциркуляции важно как можно быстрее восстановить кровоток путем:

  • Фибринолитической терапии (альтеплаза, стрептокиназа);
  • Тромболизиса (гепарин);
  • Введения антигипоксантов (аскорбиновая кислота), ингибиторов протеаз (контрикал, трасилол), антиагрегантов (аспирин), антикоагулянтов (гепарин, варфарин, фраксипарин), спазмолитиков.

В случае системных расстройств, обусловленных сердечной недостаточностью, проводится лечение основного заболевания, а дополнительно назначаются средства для улучшения микроциркуляции в тканях. Шок с шунтированием крови требует интенсивной терапии в условиях реанимации.

Препараты для улучшения периферического кровообращения включают:

  1. Ангиопротекторы и средства, улучшающие реологию крови, — дипиридамол, пентоксифиллин, флекситал (дипиридамол нередко назначается даже беременным женщинам с патологией кровообращения в плаценте), аскорутин;
  2. Низкомолекулярные декстраны - реополиглюкин, реомакродекс - снижают вязкость крови за счет увеличения объема плазмы;
  3. Простагландины - повышают скорость кровотока и интенсивность микроциркуляции, оказывают ангиопротекторное влияние, несколько расширяют сосудистый просвет, снижая при этом общее периферическое сопротивление (вазапростан);
  4. Блокаторы каналов кальция - улучшают микроциркуляцию, обладают нейропротекторным действием, регулируют артериальное давление - циннаризин, стугерон, норваск, нимотоп и др.;
  5. Сосудорасширяющие препараты - способствуют вазодилатации, облегчая кровоток в мелких сосудах, оказывают антиагрегантное, нейропротекторное действие, повышают устойчивость тканей к гипоксии - дротаверин, галидор, кавинтон, эуфиллин;
  6. Ганглиоблокаторы - вызывают расширение сосудов и снижают артериальное давление - димеколин, пахикарпин, пентамин;
  7. Биофлавоноиды - улучшают реологические параметры и эластичность красных клеток крови - троксевазин, венорутон;
  8. α-адреноблокаторы - расширяют сосуды внутренних органов, снижают сосудистое сопротивление и улучшают кровоток - сермион, празозин, пирроксан и другие;
  9. Растительные препараты - получают из экстрактов растений, они действуют медленнее, нежели синтетические лекарства, применяются при нарушении кровотока в мозге, ногах - гинкго билоба, танакан, билобил.

Терапия нарушений микроциркуляции требует комплексного подхода и участия специалиста, самолечение в данном случае недопустимо. При серьезных расстройствах периферического кровотока не стоит уповать на народные методы, а лучше обратиться к врачу - терапевту, кардиологу, гемостазиологу, флебологу, неврологу, которые занимаются сосудистой патологией разных органов.

Видео: лекции о нарушениях периферического кровообращения


Деятельность нашего организма напрямую зависит от его системы кровообращения. Нарушение кровообращения – это аномальное состояние, при котором ухудшается снабжение тканей кислородом и необходимыми питательными веществами вследствие изменения свойств и объема крови, находящейся в сосудах. Результатом этого является развитие гипоксии и замедление метаболических процессов, приводящих к возникновению большого числа заболеваний.

Большой и малый круги кровообращения

Сердечная недостаточность, нарушение кровообращения и его расстройство – все эти понятия характеризуют одно и то же состояние, при котором происходят не только изменения в сократительной функции миокарда левого и правого желудочка, но и наблюдаются периферические поражения кровообращения, распространяющиеся на весь организм.

Сердце является центральным органом кровообращения организма. Из левого предсердия артериальная кровь поступает в левый желудочек, затем при сердечных сокращениях кровь, обогащенная кислородом и питательными веществами, выталкивается из желудочка в аорту, движется по артериям, разветвляется на артериолы и оказывается в капиллярах, опутывающих, будто паутина, все органы. Через стенки капилляров происходит питание и газообмен в тканях, кровь доставляет кислород, а получает углекислоту и продукты обмена. Из капилляров венозная кровь через вены переносится в правое предсердие, где заканчивается большой круг кровообращения. В малом круге венозная кровь, попадая в капиллярное русло легких, обогащается кислородом и освобождается от продуктов обмена, затем по легочным венам возвращается в левое предсердие. Если на каком-то этапе движения крови либо в сердечном круге возникает нарушение кровообращения, следствием поражения является возникновение различных заболеваний.

Типы нарушений кровообращения

Система кровообращения условно делится на центральную и периферическую. Аномалии центральной системы вызваны нарушением в работе сердца и крупных кровеносных сосудов. Поражения в периферической системе обусловлены структурными и функциональными нарушениями этих сосудов. Нарушения кровообращения подразделяются на следующие виды: гиперемию, ишемию, кровотечения, тромбоз, эмболию, шок.

Также выделяются хронические и острые нарушения кровообращения. Хронические патологии развиваются в течение длительного срока при постепенном развитии атеросклеротических бляшек на внутренней поверхности артерий, ведущих к их сужению вплоть до полной облитерации. Окклюзионные поражения сосудов нижних конечностей могут быть причиной развития некрозов.

Острые поражения системы кровообращения обычно являются следствием сердечно-сосудистой недостаточности, но также проявляются на фоне поражения центральной нервной системы, эндокринных заболеваний и других патологий. К острым нарушениям кровообращения относятся инсульты и тромбозы мозговых вен.

Причины заболевания

Нарушение кровообращения – это один из симптомов большого числа заболеваний сердечно-сосудистой системы. Условно все причины, вызывающие патологию, можно поделить на пять групп:

  • Компрессионные;
  • Травматические;
  • Вазоспастические;
  • Вызванные возникновением опухолей;
  • Облитерирующие.

Также причиной аномалии может быть наличие инфекционных заболеваний, нарушений гормонального фона, гипертонии, диабета, почечной недостаточности. Благоприятными факторами для развития нарушений кровообращения являются ожоги, аневризмы, феномен Рейно.

Клиническая картина и симптомы нарушения кровообращения

Клиническая картина заболевания при разных видах его проявления имеет свои особенности, рассмотрим некоторые из симптомов нарушения кровообращения:

  • Гиперемия. Расширение сосудов тела при избыточном увеличении наполнения кровью. Проявляется изменением цвета кожных покровов в месте поражения сосуда в результате наполнения кровью, приобретающих розово-красный цвет. Пациент чувствует пульсацию и повышение температуры на участке поражения;
  • Кровотечение. Выход крови из сосуда, при разрыве его стенок, может быть наружным и внутренним, артериальное – пульсирующее, ярко-алого цвета, венозное кровотечение имеет темно красный цвет, при капиллярном – наблюдаются точечные кровотечения из мелких сосудов;
  • Ишемия. Пониженное снабжение сосудов артериальной кровью проявляется ощущением боли в пораженном органе вследствие недостатка поступления кислорода и накапливания продуктов обмена;
  • Тромбоз. Нарушение свертывания крови, при котором просвет сосуда перекрывается тромбом, может быть полное либо частичное перекрытие. Следствием является замедление оттока крови от пораженного участка, при этом наблюдаются отечность, синюшность кожных покровов, болезненные ощущения;
  • Эмболия. Перекрытие просвета сосуда чужеродными частицами такими, как кусочки жировой ткани, микроорганизмы, пузырьки воздуха. Симптомы те же, что и при тромбозе;
  • Шок. Клиническое состояние, вызванное уменьшением кровоснабжения тканей вследствие нарушения ауторегуляции микроциркуляторной системы. Проявляется деструктивными изменениями внутренних органов, при нарушении циркуляции крови может привести к быстрому летальному исходу.

Также часто при периферическом поражении наблюдаются следующие симптомы нарушении кровообращения: боль, покалывание, ощущение зябкости и онемения в конечностях, головокружение, шум в ушах, расстройство памяти, ослабление функции зрения, нарушение сна. Наиболее ярко симптомы выражены после физических нагрузок, степень их проявления зависит также от тяжести недуга.

Лечение нарушения кровообращения

Для диагностики заболевания используются анализы крови, обследование методом МРТ, дуплексное сканирование, консультации окулиста и других специалистов. Лечение нарушения кровообращения зависит в первую очередь от определения причины и вида патологии. При расстройствах кровотока, выявленных на начальной стадии развития, назначается адекватное медикаментозное лечение, кроме этого, специалистами рекомендуется выполнение регулярных физических упражнений, способствующих укреплению сердечной мышцы и улучшению кровоснабжения в органах и тканях. Необходимо придерживаться специальной диеты с низким содержанием жиров и соли, важно избавиться от лишнего веса и отказаться от вредных привычек. Выполнение всех рекомендаций вместе с курсом терапии оказывает эффективное воздействие на организм. При остром нарушении кровообращения лечение проводится оперативными методами, позволяющими восстановить проходимость сосудов. Такими методами являются: пластика артерий, шунтирование и протезирование сосудов, эмболэктомия, для улучшения кровообращения конечностей применяются операции непрямой реваскуляризации.

Нарушение кровообращения можно и нужно обязательно лечить, выполняя все назначения специалистов, игнорирование заболевания либо попытки самолечения могут привести к инвалидности.

НАРУШЕНИЕ ПЕРИФЕРИЧЕСКОГО КРОВООБРАЩЕНИЯ

ТРОМБОЗ И ЭМБОЛИЯ

ПЛАН

1. Понятие периферического кровообращения.

2. Артериальная гиперемия.

2.1. Физиологическая гиперемия.

2.2. Патологическая артериальная гиперемия.

2.3. Нейрогенная артериальная гиперемия нейротонического типа.

2.4. Нейрогенная артериальная гиперемия нейропаралитического типа.

3. Венозная гиперемия.

4. Ишемия.

4.1. Компрессионная ишемия.

4.2. Обтурационная ишемия.

4.3. Ангиоспастическая ишемия.

6. Тромбоз.

6.1. Определение тромбоза.

6.2. Основные факторы тромбообразования.

6.3. Исход тромбоза.

7. Эмболия.

7.1. Эмболия экзогенного происхождения.

7.2. Эмболия эндогенного происхождения.

7.2.1. Жировая эмболия.

7.2.2. Тканевая эмболия.

7.2.3. Эмболия околоплодными водами.

7.3. Эмболия малого круга кровообращения.

7.4. Эмболия большого круга кровообращения.

7.5. Эмболия воротной вены.

Кровообращение на участке периферического сосудистого русла (мелкие артерии, артериолы, капилляры, посткапиллярные венулы, артериовенулярные анастомозы, венулы и мелкие вены), кроме движения крови, обеспечивают обмен воды, электролитов, газов, необходимых питательных веществ и метаболитов по системе кровь – ткань – кровь.

Механизмы регуляции регионарного кровообращения включают, с одной стороны, влияние сосудосуживающей и сосудорасширяющей иннервации, с другой – воздействие на сосудистую стенку неспецифических метаболитов, неорганических ионов, местных биологически активных веществ и гормонов, приносимых кровью. Считают, что с уменьшением диаметра сосудов значение нервной регуляции уменьшается, а метаболической, наоборот, возрастает.

В органе или тканях, в ответ на функциональные и структурные изменения в них могут возникать местные нарушения кровообращения. Наиболее часто встречающиеся формы местного нарушения кровообращения: артериальная и венозная гиперемия, ишемия, стаз, тромбоз, эмболия.

АРТЕРИАЛЬНАЯ ГИПЕРЕМИЯ.

Артериальная гиперемия- это увеличение кровенаполнения органа в результате избыточного поступления крови по артериальным сосудам. Ее характеризуют ряд функциональных изменений и клинические признаки:

· разлитая краснота, расширение мелких артерий, артериол, вен и капилляров, пульсация мелких артерий и капилляров,

· увеличение числа функционирующих сосудов,

· местное повышение температуры,

· увеличение объема гиперемированного участка,

· повышение тургора ткани,

· увеличение давления в артериолах, капиллярах и венах,

· ускорение кровотока, повышение обмена и усиление функции органа.

Причинами артериальной гиперемии могут быть: влияние различных факторов внешней среды, включая биологические, физические, химические; увеличение нагрузки на орган или участок ткани, а также психогенные воздействия. Поскольку часть этих агентов представляют собой обычные физиологические раздражители (увеличение нагрузки на орган, психогенные воздействия) артериальную гиперемию, возникающую под их действием, следует считать физиологической. Основной разновидностью физиологической артериальной гиперемии является рабочая, или функциональная, а также реактивная гиперемия.

Рабочая гиперемия – это увеличение кровотока в органе, сопровождающее усиление функции его (гиперемия поджелудочной железы во время пищеварения, скелетной мышцы во время ее сокращения, увеличение коронарного кровотока при усилении работы сердца, прилив крови к головному мозгу при психической нагрузке).

Реактивная гиперемия представляет собой увеличение кровотока после его кратковременного ограничения. Развивается обычно в почках, головном мозге, коже, кишках, мышцах. Максимум реакции наблюдается через несколько секунд после возобновления перфузии. Ее длительность определяется продолжительностью окклюзии. За счет реактивной гиперемии, таким образом, ликвидируется «задолженность» по кровотоку, возникшая во время окклюзии.

Патологическая артериальная гиперемия развивается под действием необычных (патологических) раздражителей (химические вещества, токсины, продукты нарушенного обмена, образующиеся при воспалении, ожоге; лихорадка, механические факторы). В отдельных случаях условием возникновения патологической артериальной гиперемии является повышение чувствительности сосудов к раздражителям, что наблюдается, например, при аллергии.

Инфекционная сыпь, покраснение лица при многих инфекционных заболеваниях, (корь, сыпной тиф, скарлатина), вазомоторные расстройства при системной красной волчанке, покраснение кожи конечности при повреждении определенных нервных сплетений, покраснение половины лица при невралгии, связанной с раздражением тройничного нерва, и т.п., являются клиническими примерами патологической артериальной гиперемии.

В зависимости от фактора, вызывающего патологическую артериальную гиперемию, можно говорить о воспалительной, тепловой гиперемии, ультрафиолетовой эритеме и т.д.

По патогенезу различают два вида артериальной гиперемии – нейрогенную (нейротонического и нейропаралитического типа) и обусловленную действием местных химических (метаболических) факторов.

Нейрогенная артериальная гиперемия нейротонического типа может возникать рефлекторно в связи с раздражением экстеро- и интерорецепторов, а также при раздражении сосудорасширяющих нервов и центров. В качестве раздражителей могут выступать психические, механические, температурные, химические (скипидар, горчичное масло и др.) и биологические агенты.

Типичным примером нейрогенной артериальной гиперемии является покраснение лица и шеи при патологических процессах во внутренних органах (яичниках, сердце, печени, легких).

Артериальная гиперемия, обусловленная холинэргическим механизмом (влияние ацетилхолина), возможна и в других органах и тканях (язык, наружные половые органы и т.п.), сосуды которых иннервируются парасимпатическими нервными волокнами.

При отсутствии парасимпатической иннервации развитие артериальной гиперемии обусловлено симпатической (холинэргической, гистаминэргической и бета-адренэргической) системой представленной на периферии соответствующими волокнами, медиаторами и рецепторами (Н 2 -рецепторы для гистамина, бета-адрено рецепторы для норадреналина, мускариновые рецепторы для ацетилхолина).

Нейрогенную артериальную гиперемию нейропаралитического типа можно наблюдать в клинике и эксперименте на животных при перерезке симпатических и альфа-адренэргических волокон и нервов, оказывающих сосудосуживающее действие.

Симпатические сосудосуживающие нервы тонически активны и в обычных условиях постоянно несут импульсы центрального происхождения (1-3 импульса в 1 секунду в состоянии покоя), которые и определяют нейрогенный (вазомоторный) компонент сосудистого тонуса. Их медиатором является норадреналин.

У человека и животных тоническая пульсация присуща симпатическим нервам, идущих к сосудам кожи верхних конечностей, ушей, скелетной мускулатуры, пищевого канала и т.д. Перерезка этих нервов в каждом из указанных органов вызывает увеличение кровотока в артериальных сосудах. На это эффекте основано применение периартериальной и ганглионарной симпактэктомии при эндартериите, сопровождающемся длительными сосудистыми спазмами.

Артериальную гиперемию нейропаралитического типа можно получить и химическим путем, блокируя передачу центральных нервных импульсов в области симпатических узлов (с помощью ганглиоблокаторов) или на уровне симпатических нервных окончаний (с помощью симпатолических или альфа-адреноблокирующих средств). В этих условиях блокируются потенциалзависимые медленные Ca 2+ -каналы, нарушается поступление в гладкомышечные клетки внеклеточного Са 2+ по электрохимическому градиенту, а также освобождение Са 2+ из саркоплазматического ретикулума. Сокращение гладкомышечных клеток, под действием нейромедиатора норадреналина становится, таким образом, невозможным. Нейропаралитический механизм артериальной гиперемии частично лежит в основе воспалительной гиперемии, ультрафиолетовой эритемы и др.

Представление о существовании артериальной гиперемии (физиологической и патологической), обусловленной местными метаболическими (химическими) факторами, основывается на том, что ряд метаболитов вызывают расширение сосудов, действуя непосредственно на неисчерченные мышечные элементы их стенки, независимо от иннервационных влияний. Это подтверждается также тем, что полная денервация не предотвращает развития ни рабочей, ни реактивной, ни воспалительной артериальной гиперемии.

Важная роль в увеличении кровотока при местных сосудистых реакциях отводится изменению рН тканевой среды – сдвиг реакции среды в сторону ацидоза способствует расширению сосудов благодаря повышению чувствительности к аденозину гладкомышечных клеток, а также уменьшению степени насыщения гемоглобина кислородом. В патологических условиях (ожог, травма, воспаление, действие УФ лучей, ионизирующей радиации и т.д.) наряду с аденозином существенное значение приобретают и другие метаболические факторы.

Исход артериальной гиперемии может быть различным. В большинстве случаев артериальная гиперемия сопровождается усилением обмена веществ и функции органа, что является приспособительной реакцией. Однако возможны и неблагоприятные последствия. При атеросклерозе, например, резкое расширение сосуда может сопровождаться разрывом его стенки и кровоизлиянием в ткань. Особенно опасны такие явления в головном мозге.

ВЕНОЗНАЯ ГИПЕРЕМИЯ.

Венозная гиперемия развивается вследствие увеличения кровенаполнения органа или участка ткани в результате затрудненного оттока крови по венам.

Причины ее развития:

· закупорка вен тромбом или эмболом;

· сдавление опухолью, рубцом, увеличенной маткой и т.д.

Тонкостенные вены могут также сдавливаться в участках резкого повышения тканевого и гидростатического давления (в очаге воспаления, в почках при гидронефрозе).

В отдельных случаях предрасполагающим моментом венозной гиперемии является конституционная слабость эластического аппарата вен, недостаточное развитие и пониженный тонус гладкомышечных элементов их стенок. Нередко такое предрасположение носит семейный характер.

Вены, как и артерии, хотя и в меньшей степени, представляют собой богатые рефлексогенные зоны, что позволяет предполагать возможность нервно-рефлекторной природы венозной гиперемии. Морфологической основой вазомоторной функции вне является нервно-мышечный аппарат, включающий гладкомышечные элементы и эффекторные нервные окончания.

Венозная гиперемия развивается также при ослаблении функции правого желудочка сердца, уменьшения присасывающего действия грудной клетки (экссудативный плеврит, гемоторакс), затруднение кровотока в малом круге кровообращения (пневмосклероз, эмфизема легких, ослабление функции левого желудочка).

Основным фактором, обусловливающим местные изменения при венозной гиперемии, является кислородное голодание (гипоксия) ткани.

Гипоксия при этом первоначально обусловлена ограничением притока артериальной крови, затем действием на тканевые ферментные системы продуктов нарушения обмена, следствием чего является нарушение утилизации кислорода. Кислородное голодание при венозной гиперемии обусловливает нарушение тканевого обмена, вызывает атрофические и дистрофические изменения и избыточное разрастание соединительной ткани.

Наряду с местными изменениями при венозной гиперемии, особенно если она вызвана общими причинами и имеет генерализованный характер, возможен и ряд общих гемодинамических нарушений с весьма тяжелыми последствиями. Чаще всего они возникают при закупорке крупных венозных коллекторов – воротной, нижней полой вены. Скопление крови в указанных сосудистых резервуарах (до 90% всей крови) сопровождается резким снижением артериального давления, нарушением питания жизненно важных органов (сердце, мозг). Вследствие недостаточности сердца или паралича дыхания возможен смертельный исход.

Нарушение периферического кровообращения, в основе которого лежит ограниченное или полное прекращение притока артериальной крови, называется ишемией (от греч. ischeim – задерживать, останавливать, haima – кровь) или местным малокровием.

Ишемия характеризуется следующими признаками:

· побледнением ишеменизированного участка органа;

· снижением температуры;

· нарушением чувствительности в виде парестезии (ощущение онемения, покалывания, “ползания мурашек”);

· болевым синдромом;

· уменьшением скорости кровотока и объема органа;

· понижением артериального давления на участке артерии;

· расположенном ниже препятствия, понижением напряжения кислорода в ишеменизированном участке органа или ткани;

· нарушением образования межтканевой жидкости и снижением тургора ткани;

· нарушением функции органа или ткани;

· дистрофическими изменениями.

Причиной ишемии могут быть различные факторы: сдавление артерии; обтурация ее просвета; действие на нервно-мышечный аппарат ее стенки. В соответствии с этим различают компрессионный, обтурационный и ангиоспастический типы ишемии.

Компрессионная ишемия возникает от сдавления приводящей артерии лигатурой, рубцом, опухолью, инородным телом и др.

Обтурационная ишемия является следствием частичного сужения или полного закрытия просвета артерии тромбом или эмболом. Продуктивно-инфильтративные и воспалительные изменения стенки артерии, возникающие при атеросклерозе, облитерирующем эндартериите, узелковом периартериите, также приводят к ограничению местного кровотока по типу обтурационной ишемии.

Ангиоспастическая ишемия возникает вследствие раздражения сосудосуживающего аппарата сосудов и их рефлекторного спазма, вызванного эмоциональным воздействием (страх, боль, гнев), физическими факторами (холод, травма, механическое раздражение), химическими агентами, биологическими раздражителями (токсины бактерий) и т.д. В условиях патологии ангиоспазм характеризуется относительной продолжительностью и значительной выраженностью, что может быть причиной резкого замедления кровотока, вплоть до полной остановки его. Чаще всего ангиоспазм развивается в артериях относительно крупного диаметра внутри органа по типу сосудистых безусловных рефлексов с соответствующих интерорецепторов. Эти рефлексы характеризуются значительной инертностью и автономностью.

Характер обменных, функциональных и структурных изменений в ишемизированном участке ткани или органа определяется степенью кислородного голодания, тяжесть которого зависит от скорости развития и типа ишемии, ее продолжительности, локализации, характера коллатерального кровообращения, функционального состояния органа или ткани.

Ишемия, возникающая на участках полной обтурации или компрессии артерий, при прочих равных условиях вызывает более тяжелые изменения, чем при спазме. Быстро развивающаяся ишемия, как и длительная, протекает более тяжело по сравнению с медленно развивающейся или непродолжительной. Особенно большое значение в развитии ишемии имеет внезапная обтурация тканей, так как при этом может присоединиться рефлекторный спазм системы разветвлений данной артерии.

Ишемия жизненно важных органов (мозг, сердце) имеет более тяжелые последствия, чем ишемия почек, селезенки, легких, а ишемии последних – более тяжелые по сравнению с ишемией скелетной, мышечной, костной или хрящевой ткани. Указанные органы характеризуются высоким уровнем энергетического обмена, в то же время их коллатеральные сосуды функционально абсолютно или относительно не способны компенсировать нарушение кровообращения. Напротив, скелетные мышцы и особенно соединительная ткань, благодаря низкому уровню энергетического обмена в них, более устойчивы в условиях ишемии.

Стаз – замедление и остановка тока крови в капиллярах, тонких артериях и венах.

Различают истинный (капиллярный) стаз, возникающий вследствие патологических изменений в капиллярах или нарушении реологических свойств крови, ишемический – вследствие полного прекращения притока крови из соответствующих артерий в капиллярную сеть и венозный.

Венозный и ишемический стазы являются следствием простого замедления и остановки кровотока. Эти состояния возникают по тем же причинам, что и венозная гиперемия и ишемия. Венозный стаз может быть результатом сдавления вен, закупорки их тромбом или эмболом, а ишемический – следствием спазма, сдавления или закупорки артерий. Устранение причины стаза ведет к восстановлению нормального кровотока. Напротив, прогрессирование ишемического и венозного стазов способствуют развитию истинного.

При истинном стазе столб крови в капиллярах и мелких венах становится неподвижным, кровь гомогенизируется, эритроциты набухают и теряют значительную часть своего пигмента. Плазма вместе с освободившимся гемоглобином выходит за пределы сосудистой стенки. В тканях очага капиллярного стаза отмечаются признаки резкого нарушения питания, омертвение.

Причиной истинного стаза могут быть физические (холод, тепло), химические (яды, концентрированный раствор хлорида натрия, других солей, скипидар, горчичное и кротоновое масла) и биологические (токсины микроорганизмов) факторы.

Механизм развития истинного стаза объясняется внутрикапиллярной агрегацией эритроцитов, т.е. их склеиванием и образованием конгломератов, затрудняющих кровоток. При этом повышается периферическое сопротивление.

В патогенезе истинного стаза важное значение имеет замедление кровотока в капиллярных сосудах вследствие сгущения крови. Ведущую роль при этом играет повышенная проницаемость стенки капиллярных сосудов, расположенных в зоне стаза. Этому способствуют этиологические факторы, вызывающие стаз, и метаболиты, образующиеся в тканях. Особое значение в механизме стаза отводится биологически активным веществам (серотонин, брадикинин, гистамин), а также ацилотическому сдвигу тканевой реакции среды и ее коллоидному состоянию. В результате отмечается повышение проницаемости сосудистой стенки и расширение сосудов, ведущие к сгущению крови, замедлению кровотока, агрегации эритроцитов и, как следствие – стазу.

Особенно важным является выход в ткани плазменных альбуминов, способствующих понижению отрицательного заряда эритроцитов, что может сопровождаться выпадением их из взвешенного состояния.

Тромбоз – это процесс прижизненного образования на внутренней поверхности стенки сосудов сгустков крови, состоящих из ее элементов.

Сгустки крови могут быть пристеночными (частично уменьшают просвет сосудов) и закупоривающими. Первая разновидность тромбов чаще всего возникает в сердце и стволах магистральных сосудов, вторая – в мелких артериях и венах.

В зависимости от того, какие компоненты преобладают в структуре тромба, различают белые, красные и смешанные тромбы. В первом случае тромб образуют тромбоциты, лейкоциты, а также небольшое количество белков плазмы; во втором – эритроциты, скрепленные нитями фибрина; смешанные тромбы представляют собой чередующиеся белые и красные слои.

Основные факторы тромбообразования (в виде триады Вихрова).

1. Повреждение сосудистой стенки, возникающее под действием физических (механическая травма, электрический ток), химических (NaCl, FeCl3, HgCl2, AgNO3) и биологических (эндотоксины микроорганизмов) факторов в результате нарушения ее питания и метаболизма. Указанными нарушениями, кроме того, сопровождаются атеросклероз, гипертоническая болезнь, аллергические процессы.

2. Нарушение активности свертывающей и противосвертывающей системы крови сосудистой стенки. Повышение активности свертывающей системы крови вследствие повышения в ней концентрации прокоагулянтов (тромбин, тромбопластин), как и понижение активности противосвертывающей (уменьшения содержания в крови антикоагулянтов или увеличение активности их ингибиторов), как правило, приводит к внутрисосудистому свертыванию крови (ВССК). ВССК обусловлено быстрым и значительным поступлением в сосудистое русло факторов свертывания крови (тканевого тромбопластина), что наблюдается при преждевременной отслойке плаценты, эмболии околоплодными водами, травматическом шоке, остром массивном гемолизе эритроцитов. Переход ВССК в тромбоз происходит под влиянием факторов свертывания сосудистой стенки и тромбоцитов при их повреждении.

3. Замедление кровотока и его нарушения (завихрения в области аневризмы). Этот фактор, вероятно, имеет меньшее значение, однако он позволяет объяснить, почему в венах тромбы образуются в 5 раз чаще, чем в артериях, в венах нижних конечностей в 3 раза чаще, чем в венах верхних конечностей, а также высокую частоту тромбообразования при декомпенсации кровообращения, пребывании на длительном постельном режиме.

Последствия тромбоза могут быть различными. Учитывая его значение как кровоостанавливающего механизма при острой травме, сопровождающейся кровотечением, тромбоз следует рассматривать с общебиологических позиций как приспособительное явление.

В то же время, тромбообразование при различных заболеваниях (атеросклероз, сахарный диабет и т.д.) может сопровождаться тяжелыми осложнениями, вызванными острым нарушением кровообращения в зоне тромбированного сосуда. Развитие некроза (инфаркта, гангрены) в бассейне тромбированного сосуда – конечный этап тромбоза.

Исходом тромбоза могут быть асептическое (ферментативное, аутолитическое) расплавление, организация (рассасывание с замещением соединительной тканью), реканализация, септическое (гнойное) расплавление. Последнее особенно опасно, так как способствует септикопиемии и образованию множественных абсцессов в различных органах.

Эмболия (от греч.emballein – бросить внутрь) –закупорка сосудов телами (эмболами), приносимыми током крови или лимфы.

В зависимости от характера эмболов различают эмболию:

· эндогенную, вызванную тромбом, жиром, различными тканями, околоплодными водами, газом (при кессонной болезни).

По локализации различают эмболию:

· большого круга кровообращения,

· малого круга кровообращения;

· системы воротной вены.

Во всех случаях движение эмболов обычно осуществляется в соответствии с естественным поступательным движением крови.

Эмболия экзогенного происхождения . Воздушная эмболия возникает при ранении крупных вен (яремной, подключичной, синусов твердой мозговой оболочки), которые слабо спадаются и давление в которых близко к нулю или отрицательное. Это обстоятельство может служить причиной воздушной эмболии и при осуществлении врачебных манипуляций – при инфузии растворов в указанные сосуды. В результате в поврежденные вены засасывается воздух, особенно на высоте вдоха, с последующей эмболией сосудов малого круга кровообращения. Те же условия создаются при ранении легкого или деструктивных процессах в нем, а также при наложении пневмоторакса. В таких случаях, однако, наступает эмболия сосудов большого круга обращения. К аналогичным последствия приводит поступление большого количества воздуха из легких в кровь при воздействии на человека взрывной ударной волны (воздушной, водяной), а также при «взрывной декомпрессии» и быстром подъеме на большую высоту. Возникающее при этом резкое расширение легочных альвеол, разрыв их стенки и поступление воздуха в капиллярную сеть приводят к неизбежной эмболии сосудов большого круга кровообращения. При анаэробной (газовой) гангрене возможна также газовая эмболия.

Чувствительность различных животных и человека к воздушной эмболии различна. Кролик погибает от внутривенного введения 2-3 мл воздуха, собаки переносят введения воздуха в объеме 50-70 мл/кг. Человек в этом отношении занимает промежуточное положение.

Эмболия эндогенного происхождения. Источником тромбоэмболии является частица оторвавшегося тромба. Отрыв тромба считается признаком его неполноценности («больной тромб»). В большинстве случаев «больные тромбы» образуются в венах большого круга кровообращения (вены нижних конечностей, таза, печени), чем и объясняется большая частота тромбоэмболии малого круга. Только в случае, когда тромбы образуются в левой половине сердца (при эндокардите, аневризме) или в артериях (при атеросклерозе), наступает эмболия сосудов большого круга кровообращения. Причиной неполноценности тромба, отрыва его частиц и тромбоэмболии является асептическое или гнойное расплавление его, нарушение фазы ретракции тромбообразования, а также свертывания крови.

Жировая эмболия возникает при попадании в кровоток капель жира, чаще всего эндогенного происхождения. Причиной попадания жировых капель в кровоток является повреждение (размозжение, сильное сотрясение) костного мозга, подкожной или тазовой клетчатки и жировых скоплений, жирной печени.

Поскольку источник эмболии располагается преимущественно в бассейне вен большого круга кровообращения, жировая эмболия возможна прежде всего в сосудах малого круга кровообращения. Лишь в дальнейшем возможно проникновение жировых капель через легочные капилляры (или артерио-венозные анастомозы малого круга) в левую половину сердца и артерии большого круга кровообращения.

Количество жира, вызывающего смертельную жировую эмболию, колеблется у различных животных в пределах 0,9-3 см 3 /кг.

Тканевая эмболия наблюдается при травме, когда возможен обрывков различных тканей организма особенно богатых водой (костный мозг, мышцы, головной мозг, печень) в систему циркуляции крови, прежде всего малого круга кровообращения. Особое значение имеет эмболия сосудов клетками злокачественных опухолей, поскольку является основным механизмом образования метастазов.

Эмболия околоплодными водами возникает при попадании околоплодных вод во время родов в поврежденные сосуды матки на участке отделившейся плаценты.

Газовая эмболия является основным патогенетическим звеном состояния декомпрессии, в частности кессонной болезни. Перепад атмосферного давления от повышенного к нормальному (у водолазов) или наоборот от нормального к резко пониженному (быстрый подъем на высоту, разгерметизация кабины летательного аппарата) приводит к понижению растворимости газов (азота, кислорода, углекислого) в тканях и крови и закупорке пузырьками этих газов (в первую очередь азота) капилляров, расположенных главным образом в бассейне большого круга кровообращения.

Эмболия малого круга кровообращения. Наиболее важным функциональным сдвигом при эмболии сосудов малого круга кровообращения является резкое снижение артериального давления в большом круге кровообращения и повышение давления в малом круге.

Существует несколько гипотез, объясняющих механизмы гипотензивного эффекта при эмболии легочной артерии. Большое распространение получило мнение, согласно которому острое снижение артериального давления рассматривается как рефлекторная гипотензия (разгрузочный рефлекс Швингка-Парина). Считают, что депрессорный рефлекс при этом вызывается раздражением рецепторов, расположенных в русле легочной артерии.

Определенной значение в снижении артериального давления при эмболии легочной артерии придают ослаблению функции сердца вследствие гипоксии миокарда, что является результатом увеличения нагрузки на правую половину сердца и резкого снижения артериального давления.

Обязательным гемодинамическим эффектом эмболии сосудов малого круга кровообращения является повышение артериального давления в легочной артерии и резкое увеличение градиента давления на участке легочная артерия – капилляры, что рассматривается как результат рефлекторного спазма легочных сосудов.

Эмболия большого круга кровообращения. Как уже сказано выше, в основе эмболии сосудов большого круга кровообращения чаще всего лежат патологические процессы в левой половине сердца, сопровождающиеся образованием на его внутренней поверхности тромбов (тромбоэндокардит, инфаркт миокарда), тромбообразование в артериях большого круга кровообращения с последующей тромбоэмболией, газовая или жировая эмболия. Местом частой локализации эмболов являются венечные, средняя мозговая, внутренняя сонная, почечная селезеночная артерии. При прочих равных условиях локализация эмболов определяется углом отхождения бокового сосуда, его диаметром, интенсивностью кровенаполнения органа. Большой угол отхождения боковых ветвей по отношению к вышерасположенному отрезку сосуда, сравнительно большой их диаметр, гиперемия -являются факторами, предрасполагающими к той или иной локализации эмболов.

При газовой эмболии, сопровождающей кессонную болезнь или «взрывную декомпрессию», предрасполагающим моментом к локализации эмболов в сосудах мозга и подкожной клетчатке является хорошая растворимость азота в богатых липоидами тканях.

Эмболия воротной вены . Эмболия воротной вены, хотя и встречается значительно реже, чем эмболии малого и большого круга кровообращения, привлекают внимание характерным клиническим симптомокомплексом и чрезвычайно тяжелыми гемодинамическими нарушениями.

Благодаря большой вместимости портального русла закупорка эмболом главного ствола воротной вены или основных ее ответвлений приводит к увеличению кровенаполнения органов брюшной полости (желудка, кишок, селезенки) и развитию синдрома портальной гипертензии (повышение давления крови в системе воротной вены с 8-10 дол 40-60 см вод.ст). При этом, как следствие, развивается характерная клиническая триада (асцит, расширение поверхностных вен передней стенки живота, увеличение селезенки) и ряд общих изменений, вызванных нарушением кровообращения (уменьшение притока крови к сердцу, ударного и минутного объема крови, снижение артериального давления), дыхания (одышка, затем резкое урежение дыхания, апноэ) и функции нервной системы (потеря сознания, паралич дыхания).

В основе этих общих нарушений лежит преимущественно уменьшение массы циркулирующей крови, вызванной скоплением (до 90%) ее в портальном русле. Такие нарушения гемодинамики часто являются непосредственной причиной смерти больных.

Литература.

1. Н.Н.Зайко. Патологическая физиология – К., 1985.

2. А.Д.Адо, Л.М.Ишимова. Патологическая физиология – Медицина, 1980.

3. Г.Е.Аркадьева, Н.Н.Петринцева. Механизмы нарушения тромбоцитарно-сосудистого гемостаза – Л.,1988.

4. В.С.Пауков, Н.К.Хитров. Патология – М.:Медицина, 1989.

ГЛАВА 9 ПАТОФИЗИОЛОГИЯ ПЕРИФЕРИЧЕСКОГО (ОРГАННОГО) КРОВООБРАЩЕНИЯ И МИКРОЦИРКУЛЯЦИИ

ГЛАВА 9 ПАТОФИЗИОЛОГИЯ ПЕРИФЕРИЧЕСКОГО (ОРГАННОГО) КРОВООБРАЩЕНИЯ И МИКРОЦИРКУЛЯЦИИ



Периферическим, или органным, называется кровообращение в пределах отдельных органов. Микроциркуляция составляет его часть, которая непосредственно обеспечивает обмен веществ между кровью и окружающими тканями (к микроциркуляторному руслу относятся капилляры и прилегающие к ним мелкие артерии и вены, а также артериовенозные анастомозы диаметром до 100 мкм). Нарушение микроциркуляции делает невозможным адекватное снабжение тканей кислородом и питательными веществами, а также удаление из них продуктов метаболизма.

Объемная скорость кровотока Q через каждый орган или ткань определяется как артериовенозной разностью давлений в сосудах этого органа: Р а - Р у или ΔΡ, так и сопротивлением R на протяжении данного периферического сосудистого русла: Q = ΔΡ/R, т.е. чем больше артериовенозная разность давлений (ΔΡ), тем интенсивнее периферическое кровообращение, но чем больше периферическое сосудистое сопротивление R, тем оно слабее. Изменения как ΔΡ, так и R являются ведущими в нарушениях периферического кровообращения.

Основными формами расстройств периферического кровообращения являются: 1) артериальная гиперемия - усиление кровотока в органе или ткани вследствие расширения приводящих артерий; 2) ишемия - ослабление кровотока в органе или ткани вследствие затруднения ее течения по приводящим артериям; 3) венозный застой крови - увеличение кровенаполнения органа или ткани вследствие затруднения оттока крови в отводящие вены; 4) нарушение реологических свойств крови, вызывающее стаз в микрососудах - местную остановку кровотока вследствие первичного нарушения текучести (вязкости) крови. Зависимость между линейной и объемной скоростями тока крови и суммарной площадью

микрососудистого русла выражается формулой, отражающей закон непрерывности, который, в свою очередь, отражает закон сохранения массы: Q = vxS, или v = Q/S, где Q - объемная скорость тока крови; v - его линейная скорость; S - площадь поперечного сечения микрососудистого русла.

Симптомы

Артериальная гиперемия

Ишемия

Венозный застой крови

Состояние сосудов

Дилатация артерий, вторичное расширение капиллярного и венозного русла

Сужение или закупорка артерий

Расширение венозного русла от сдавления или закупорки отводящих вен

Объем протекающей крови

Увеличен

Уменьшен

Уменьшен

Скорость тока крови

Увеличена объемная и линейная скорость

Уменьшена объемная и линейная скорость

Кровенаполнение сосудов в тканях и органах

Увеличено

Уменьшено

Увеличено

Окончание табл. 9-2

9.1. АРТЕРИАЛЬНАЯ ГИПЕРЕМИЯ

Артериальная гиперемия - увеличение кровенаполнения органа или ткани вследствие увеличения притока крови по расширенным артериям и артериолам.

9.1.1. Причины и механизм артериальной гиперемии

К артериальной гиперемии может привести усиленное действие обычных физиологических раздражителей (солнечных лучей, тепла и др.), а также действие болезнетворных факторов (биологических, механических, физических). Расширение просвета приводящих артерий и артериол достигается за счет реализации нейрогенного и гуморального механизмов или их сочетания.

Нейрогенный механизм. Различают нейротоническую и нейропаралитическую разновидности нейрогенного механизма развития артериальной гиперемии. Нейротонический механизм характеризуется преобладанием эффектов парасимпатических вазодилататорных влияний на сосудистую стенку (за счет ацетилхолина) по сравнению с симпатическими влияниями (примером является покраснение лица и шеи при патологических процессах во внутренних органах - яичниках, сердце; классическим примером нейротонической гиперемии у человека считается краска стыда или гнева на щеках). Нейропаралитический механизм заключается в снижении или отсутствии симпатических влияний на стенки артерий и артериол (например, при повреждении симпатических

нервов, идущих к коже верхних конечностей, ушей, отмечается их покраснение; классическим примером нейропаралитической гиперемии у человека считается так называемый морозный румянец на щеках). Проявлением нейропаралитического действия электрического тока считаются так называемые «знаки молнии» (зоны артериальной гиперемии по ходу прохождения тока при поражении молнией).

Гуморальный механизм. Он обусловлен действием на артерии и артериолы вазодилататоров, которые местно увеличиваются и оказывают сосудорасширяющий эффект. Расширение сосудов вызывают гистамин, брадикинин, молочная кислота, избыток углекислоты, оксида азота, аденозина, гипоксия, ацидоз тканевой среды, некоторые простагландины и др.

9.1.2. Виды артериальной гиперемии

Различают физиологическую и патологическую артериальную гиперемию.

К физиологической артериальной гиперемии относят рабочую (функциональную) и реактивную (постишемическую) гиперемию. Рабочая гиперемия обусловлена метаболическими потребностями органа или ткани в связи с увеличением их функционирования. Например, гиперемия в сокращающейся мышце при физической работе, гиперемия поджелудочной железы и кишечной стенки в момент пищеварения, гиперемия секретирующей эндокринной железы, гиперемия слюнных желез. Увеличение сократительной активности миокарда ведет к росту коронарного кровотока, активация головного мозга сопровождается усилением его кровоснабжения. Реактивная (постишемическая) гиперемия наблюдается после временного прекращения кровотока (временной ишемии) и носит защитно-приспособительный характер.

Патологическая артериальная гиперемия развивается в зоне хронического воспаления, в месте длительного действия солнечного тепла, при поражении симпатической нервной системы (при некоторых инфекционных заболеваниях). Патологическая артериальная гиперемия головного мозга отмечается при гипертоническом кризе.

9.1.3. Микроциркуляция при артериальной гиперемии

Изменения микроциркуляции при артериальной гиперемии возникают в результате расширения приводящих артерий и артериол. Вследствие увеличения артериовенозной разности давлений в микрососудах скорость кровотока в капиллярах возрастает, повышается внутрикапиллярное давление, увеличивается количество функционирующих капилляров (рис. 9-1).

Объем микроциркуляторного русла при артериальной гиперемии возрастает главным образом за счет увеличения количества функционирующих капилляров. Например, число капилляров в работающих скелетных мышцах в несколько раз выше, чем в неработающих. При этом функционирующие капилляры расширяются незначительно и главным образом вблизи артериол.

Когда закрытые капилляры раскрываются, они превращаются сначала в плазматические (капилляры, имеющие нормальный просвет, но содержащие лишь плазму крови), а затем в них начинает циркулировать цельная кровь - плазма и форменные элементы. Раскрытию капилляров при артериальной гиперемии способствуют повышение внутрикапиллярного давления и изменение

Рис. 9-1. Изменения микроциркуляции при артериальной гиперемии (по Г.И. Мчедлишвили)

механических свойств соединительной ткани, окружающей стенки капилляров. Заполнение же плазматических капилляров цельной кровью обусловлено перераспределением эритроцитов в кровеносной системе: через расширенные артерии в капиллярную сеть поступает повышенный объем крови с относительно высоким содержанием эритроцитов (высокий гематокрит). Заполнению плазматических капилляров эритроцитами способствует повышение скорости кровотока.

Вследствие увеличения количества функционирующих капилляров растет площадь стенок капилляров для транскапиллярного обмена веществ. Одновременно увеличивается поперечное сечение микроциркуляторного русла. Вместе с возрастанием линейной скорости это ведет к значительному повышению объемной скорости кровотока. Увеличение объема капиллярного русла при артериальной гиперемии приводит к повышению кровенаполнения органа (отсюда возник термин «гиперемия», т.е. полнокровие).

Повышение давления в капиллярах может быть весьма значительным. Оно ведет к усилению фильтрации жидкости в тканевые щели, вследствие чего количество тканевой жидкости увеличивается. При этом лимфоотток из ткани значительно усиливается. Если стенки микрососудов изменены, то могут происходить кровоизлияния.

9.1.4. Симптомы артериальной гиперемии

Внешние признаки артериальной гиперемии определяются главным образом увеличением кровенаполнения органа и интенсивности кровотока в нем. Цвет органа при артериальной гиперемии становится ало-красным вследствие того, что поверхностно расположенные сосуды в коже и слизистых оболочках заполняются кровью с высоким содержанием эритроцитов и повышенным количеством оксигемоглобина, поскольку в результате ускорения кровотока в капиллярах при артериальной гиперемии кислород используется тканями только частично, т.е. имеет место артериализация венозной крови.

Температура поверхностно расположенных тканей или органов повышается вследствие усиления кровотока в них, так как баланс приноса и отдачи тепла смещается в положительную сторону. В дальнейшем само по себе повышение температуры может вызвать

усиление окислительных процессов и способствовать еще большему повышению температуры.

Тургор (напряжение) тканей возрастает, так как микрососуды расширяются, переполняются кровью, количество функционирующих капилляров возрастает.

9.1.5. Значение артериальной гиперемии

Артериальная гиперемия может иметь как положительное, так и отрицательное значение для организма. Это зависит от того: а) способствует ли она соответствию между интенсивностью микроциркуляции и метаболическими потребностями ткани и б) обусловливает ли она устранение каких-либо местных нарушений в них. Если артериальная гиперемия способствует всему этому, то ее роль положительна, а если нет, то она оказывает патогенное влияние.

Положительное значение артериальной гиперемии связано с усилением как доставки кислорода и питательных веществ в ткани, так и удаления из них продуктов метаболизма, что необходимо, однако, лишь в тех случаях, когда потребность тканей в этом повышена. При физиологических условиях появление артериальной гиперемии связано с усилением активности (и интенсивности обмена веществ) органов или тканей. Например, артериальную гиперемию, возникающую при сокращении скелетных мышц, усилении секреции желез, повышении активности нейронов и т.д., называют функциональной. При патологических условиях артериальная гиперемия также может иметь положительное значение, если она компенсирует те или иные нарушения. Такая гиперемия возникает в случаях, когда ткань испытывает дефицит кровоснабжения. Например, если местный кровоток был до того ослабленным (ишемия) вследствие сужения приводящих артерий, наступающая вслед за этим гиперемия, называемая постишемической, имеет положительное, т.е. компенсаторное значение. При этом в ткань приносится больше кислорода и питательных веществ, лучше удаляются продукты обмена веществ, которые накопились во время ишемии. Примерами артериальной гиперемии компенсаторного характера могут служить местное расширение артерий и усиление кровотока в очаге воспаления. Давно известно, что искусственное устранение или ослабление этой гиперемии ведет к более вялому течению и неблагоприятному исходу воспаления. Поэтому врачи издавна ре-

комендуют усиливать гиперемию при многих видах заболеваний (в том числе и воспалений) с помощью теплых ванн, грелок, согревающих компрессов, горчичников, медицинских банок (это пример вакатной гиперемии) и других физиотерапевтических процедур.

Отрицательное значение артериальной гиперемии может иметь место, когда потребность в усилении кровотока отсутствует или степень артериальной гиперемии избыточна. В этих случаях она может приносить организму вред. В частности, вследствие местного повышения давления в микрососудах могут возникать кровоизлияния в ткань в результате разрыва сосудистых стенок (если они патологически изменены) или же диапедеза, когда наступает просачивание эритроцитов сквозь стенки капилляров; может развиться также отек ткани. Эти явления особенно опасны в центральной нервной системе. Усиленный приток крови в головной мозг сопровождается неприятными ощущениями в виде головных болей, головокружения, шума в голове. При некоторых видах воспаления усиление вазодилатации и артериальной гиперемии также может играть отрицательную роль. Это хорошо знают врачи, когда рекомендуют воздействовать на очаг воспаления не тепловыми процедурами, а, наоборот, холодом, чтобы ослабить гиперемию (например, в первое время после травмы, при аппендиците и т.д.).

Возможное значение артериальной гиперемии для организма показано на рис. 9-2.

Рис. 9-2. Значение артериальной гиперемии для организма

9.2. ИШЕМИЯ

Ишемия (от греч. ischein - задерживать, haima - кровь) уменьшение кровенаполнения органа или ткани вследствие уменьшения притока крови по артериям и артериолам.

9.2.1. Причины ишемии

Ишемия возникает при значительном увеличении сопротивления кровотоку в приводящих артериях и отсутствии (или недостаточности) коллатерального (окольного) притока крови в данную сосудистую территорию.

Увеличение сопротивления в артериях бывает связано главным образом с уменьшением их просвета. Значительную роль играет также вязкость крови, при увеличении которой сопротивление кровотоку растет. Вызывающее ишемию уменьшение сосудистого просвета может быть обусловлено патологической вазоконстрикцией (ангиоспазмом), полной или частичной закупоркой просвета артерий (тромбом, эмболом), склеротическими и воспалительными изменениями артериальных стенок и сдавлением артерий извне.

Ангиоспазм - констрикция артерий патологического характера,

которая может вызывать (в случае недостаточности коллатерального кровоснабжения) ишемию соответствующего органа или ткани. Непосредственной причиной спазма артерий являются изменения функционального состояния сосудистых гладких мышц (увеличение степени их сокращения и главным образом нарушение их расслабления), в результате чего нормальные вазоконстрикторные нервные или гуморальные влияния на артерии вызывают их длительное, нерасслабляющееся сокращение, т.е. ангиоспазм. Выделяют следующие механизмы развития спазма артерий:

1. Внеклеточный механизм, когда причиной нерасслабляющегося сокращения артерий являются вазоконстрикторные вещества (например, катехоламины, серотонин, некоторые простагландины, ангиотензин-II, тромбин, эндотелин, некоторые лейкотриены, тромбоксан А 2), циркулирующие в крови или синтезирующиеся в сосудистой стенке.

2. Мембранный механизм, обусловленный нарушением процессов реполяризации плазматических мембран гладкомышечных клеток артерий.

3. Внутриклеточный механизм, когда нерасслабляющееся сокращение гладкомышечных клеток вызывается нарушением внутриклеточного переноса ионов кальция (нарушения удаления их из цитоплазмы) или же изменениями в механизме сократительных белков - актина и миозина.

Тромбоз - прижизненное отложение сгустка стабилизированного фибрина и форменных элементов крови на внутренней поверхности кровеносных сосудов с частичной или полной обтурацией их просвета. В ходе тромботического процесса формируются плотные, стабилизированные фибрином депозиты крови (тромбы), которые прочно «прирастают» к субэндотелиальным структурам сосудистой стенки. Впоследствии облитерирующие тромбы подвергаются реканализации с целью восстановления кровотока в ишемизированных органах и тканях.

Механизмы образования и структура тромбов зависят от особенностей кровотока в сосуде. В основе артериального тромбоза - тромбообразования в артериальной системе с высокой скоростью кровотока, опосредующего ишемию, - лежит активация сосудисто-тромбоцитарного (первичного) гемостаза (см. раздел 14.5.1), а в основе венозного тромбоза - образования тромбов в венозной системе, характеризующейся низкой скоростью кровотока, - активация коагуляционного (плазменного или вторичного) гемостаза (см. раздел 14.5.2). При этом артериальные тромбы состоят в основном из «слипшихся» (агрегированных) тромбоцитов («белая головка») с небольшой примесью осевших в сетях фибрина лейкоцитов и эритроцитов, формирующих «красный хвост». В составе венозных тромбов количество тромбоцитов, напротив, низкое, преобладают лейкоциты и эритроциты, придающие тромбу гомогенно-красный цвет. В связи с этим профилактику артериальных тромбозов проводят препаратами, подавляющими агрегацию тромбоцитов, - антиагрегантами (аспирин, плавикс и др.). Для профилактики венозных тромбозов, обусловливающих венозный застой крови, используют антикоагулянты: прямые (гепарин) и непрямые (препараты кумаринового ряда - неодикумарин, синкумар, варфарин и др., блокирующие витамин К-зависимый синтез факторов свертывания крови в печени).

Эмболия - закупорка артерий принесенными током крови пробками (эмболами), которые могут иметь эндогенное происхождение: а) тромбы, оторвавшиеся от места образования, например от клапанов сердца; б) кусочки ткани при травмах или опухолей при их

распаде; в) капельки жира при переломах трубчатых костей или размозжении жировой клетчатки; иногда жировые эмболы, занесенные в легкие, проникают через артериовенозные анастомозы и легочные капилляры в большой круг кровообращения. Эмболы могут быть также экзогенными: а) пузырьки воздуха, попадающие из окружающей атмосферы в крупные вены (верхнюю полую, яремные, подключичные), в которых кровяное давление может быть ниже атмосферного; проникающий в вены воздух попадает в правый желудочек, где может образоваться воздушный пузырь, тампонирующий полости правого сердца; б) пузырьки газа, формирующиеся в крови при быстром понижении барометрического давления, например при быстром подъеме водолазов из области высокого давления или при разгерметизации кабины самолета на больших высотах.

Эмболия может локализоваться:

1) в артериях малого круга кровообращения (эмболы заносятся из венозной системы большого круга кровообращения и правого сердца);

2) в артериях большого круга кровообращения (эмболы заносятся сюда из левого сердца или из легочных вен);

3) в системе воротной вены печени (эмболы приносятся сюда из многочисленных ветвей воротной вены брюшной полости).

Склеротические и воспалительные изменения артериальных стенок могут вызывать сужение сосудистого просвета в случае возникновения атеросклеротических бляшек, выступающих в сосудистый просвет, или при хронических воспалительных процессах в стенках артерий (артерииты). Создавая сопротивление кровотоку, такие изменения сосудистых стенок часто бывают причиной недостаточности притока крови (в том числе коллатерального) в соответствующее микроциркуляторное русло.

Сдавление приводящей артерии вызывает так называемую компрессионную ишемию. Это имеет место только в том случае, если давление снаружи выше, чем давление внутри сосуда. Такого рода ишемия может возникать при сдавлении сосудов растущей опухолью, рубцом или инородным телом, она может быть вызвана наложением жгута или перевязкой сосуда. Компрессионная ишемия головного мозга развивается при значительном повышении внутричерепного давления.

9.2.2. Микроциркуляция при ишемии

Значительное увеличение сопротивления в приводящих артериях вызывает понижение внутрисосудистого давления в микрососудах органа и создает условия для их сужения. Давление падает прежде всего в мелких артериях и артериолах к периферии от места сужения или закупорки, и потому артериовенозная разность давлений на протяжении микроциркуляторного русла уменьшается, вызывая замедление линейной и объемной скоростей кровотока в капиллярах.

В результате сужения артерий в области ишемии наступает такое перераспределение эритроцитов в ветвлениях сосудов, что в капилляры поступает кровь, бедная форменными элементами (низкий гематокрит). Это обусловливает превращение большого количества функционирующих капилляров в плазматические, а понижение внутрикапиллярного давления способствует их последующему закрытию. Вследствие этого количество функционирующих капилляров в ишемизированном участке ткани уменьшается.

Наступающее при этом ослабление микроциркуляции при ишемии вызывает нарушение питания тканей: уменьшается доставка кислорода (возникает циркуляторная гипоксия) и энергетических материалов. Одновременно в тканях накапливаются продукты обмена веществ.

Вследствие понижения давления внутри капилляров интенсивность фильтрации жидкости из сосудов в ткани падает, создаются условия для усиленной резорбции жидкости из ткани в капилляры. Поэтому количество тканевой жидкости в межклеточных пространствах значительно уменьшается и лимфоотток из области ишемии ослабляется вплоть до полной остановки. Зависимость разных параметров микроциркуляции при ишемии показана на рис. 9-3.

9.2.3. Симптомы ишемии

Симптомы ишемии зависят главным образом от уменьшения интенсивности кровоснабжения ткани и соответствующих изменений микроциркуляции. Цвет органа становится бледным вследствие сужения поверхностно расположенных сосудов и снижения количества функционирующих капилляров, а также уменьшения содержания эритроцитов в крови (понижение местного гематокри-

Рис. 9-3. Изменения микроциркуляции при ишемии (по Г.И. Мчедлишвили)

та). Объем органа при ишемии уменьшается в результате ослабления его кровенаполнения и снижения количества тканевой жидкости, тургор ткани снижается.

Температура поверхностно расположенных органов при ишемии понижается, так как вследствие уменьшения интенсивности кровотока через орган нарушается баланс между доставкой тепла кровью и его отдачей в окружающую среду, т.е. отдача тепла начинает превалировать над его доставкой. Температура при ишемии, естественно, не понижается во внутренних органах, с поверхности которых теплоотдача не происходит.

9.2.4. Компенсация нарушения притока крови при ишемии

При ишемии нередко наступает полное или частичное восстановление кровоснабжения пораженной ткани (даже если препятствие в артериальном русле остается). Это зависит от коллатерального притока крови, который может начинаться сразу же после возникновения ишемии. Степень такой компенсации зависит от анатомических и физиологических факторов кровоснабжения соответствующего органа.

К анатомическим факторам относятся особенности артериальных ветвлений и анастомозов. Различают:

1. Органы и ткани с хорошо развитыми артериальными анастомозами (когда сумма их просвета близка по величине к таковой закупоренной артерии) - это кожа, брыжейка. В этих случаях закупорка артерий не сопровождается каким-либо нарушением кровообращения на периферии, так как количество крови, притекающей по коллатеральным сосудам, с самого начала бывает достаточным для поддержания нормального кровоснабжения ткани.

2. Органы и ткани, артерии которых имеют мало (или вовсе не имеют) анастомозов, и поэтому коллатеральный приток крови в них возможен только по непрерывной капиллярной сети. К таким органам и тканям относятся почки, сердце, селезенка, ткань мозга. При возникновении препятствия в артериях указанных органов в них возникает тяжелая ишемия, и в результате ее - инфаркт.

3. Органы и ткани с недостаточными коллатералями. Они весьма многочисленны - это легкие, печень, стенка кишечника. Просвет коллатеральных артерий в них обычно в большей или меньшей степени недостаточен, чтобы обеспечить коллатеральный приток крови.

Физиологическим фактором, способствующим коллатеральному притоку крови, является активная дилатация артерий органа. Как только из-за закупорки или сужения просвета приводящего артериального ствола в ткани возникает дефицит кровоснабжения, начинает работать физиологический механизм регулирования, обусловливающий усиление притока крови по сохраненным артериальным путям. Этот механизм обусловливает вазодилатацию, так как в ткани накапливаются продукты нарушенного обмена веществ, которые оказывают прямое действие на стенки артерий, а также возбуждают чувствительные нервные окончания, вследствие чего наступает рефлекторное расширение артерий. При этом

расширяются все коллатеральные пути притока крови в участок с дефицитом кровообращения, и скорость кровотока в них увеличивается, способствуя кровоснабжению ткани, испытывающей ишемию.

Вполне естественно, что этот механизм компенсации функционирует неодинаково у разных людей и даже в одном и том же организме при различных условиях. У ослабленных длительной болезнью людей механизмы компенсации при ишемии могут функционировать недостаточно. Для эффективного коллатерального кровотока большое значение имеет также состояние стенок артерий: склерозированные и потерявшие эластичность коллатеральные пути притока крови менее способны к расширению, и это ограничивает возможность полноценного восстановления кровообращения.

Если кровоток в коллатеральных артериальных путях, снабжающих кровью область ишемии, относительно долго остается усиленным, то стенки этих сосудов постепенно перестраиваются таким образом, что они превращаются в артерии более крупного калибра. Такие артерии могут полностью заменить ранее закупоренный артериальный ствол, нормализуя кровоснабжение тканей.

9.2.5. Изменения в тканях при ишемии

Описанные изменения микроциркуляции при ишемии ведут к ограничению доставки кислорода и питательных веществ в ткани, а также к задержке в них продуктов обмена веществ. Накопление недоокисленных продуктов обмена (молочной, пировиноградной кислот и др.) вызывает сдвиг рН ткани в кислую сторону. Нарушение обмена веществ приводит сначала к обратимым, а затем к необратимым повреждениям тканей.

Разные ткани неодинаково чувствительны к изменениям кровоснабжения. Поэтому нарушения в них при ишемии наступают соответственно неодинаково быстро. Особенно опасна ишемия для центральной нервной системы, где недостаточность кровоснабжения сразу же приводит к расстройствам функции соответствующих областей мозга. Так, при поражении двигательных областей довольно быстро наступают парезы, параличи и т.д. Следующее место по чувствительности к ишемии занимают сердечная мышца, почки и другие внутренние органы. Ишемия в конечностях сопровождается болями, ощущением онемения, «бегания мурашек» и

дисфункцией скелетных мышц, проявляющейся, например, в виде перемежающейся хромоты при ходьбе.

В случаях, когда кровоток в области ишемии в течение соответствующего времени не восстанавливается, возникает омертвение тканей, называемое инфарктом. При патолого-анатомическом вскрытии в одних случаях обнаруживается так называемый белый инфаркт, когда в процессе омертвения кровь в область ишемии не поступает и суженные сосуды остаются заполненными лишь плазмой крови без эритроцитов. Белые инфаркты обычно наблюдаются в тех органах, в которых коллатеральные пути развиты слабо, например в селезенке, сердце и почках. В других случаях имеет место белый инфаркт с красной каемкой. Такой инфаркт развивается в сердце, почках. Геморрагический венчик образуется в результате того, что спазм сосудов по периферии инфаркта сменяется паралитическим их расширением и развитием кровоизлияний. Тромбоэмболия мелких ветвей легочной артерии вызывает развитие геморрагического красного инфаркта легкого, при этом стенки сосудов оказываются разрушенными и эритроциты как бы «нафаршировывают» всю ткань, окрашивая ее в красный цвет. Возникновению инфарктов при ишемии способствуют общие расстройства кровообращения, вызываемые сердечной недостаточностью, а также атеросклеротические изменения артерий, препятствующие коллатеральному притоку крови, склонность к спазмам артерий в области ишемии, повышение вязкости крови и т.д. Все это препятствует коллатеральному притоку крови и нормализации микроциркуляции.

9.3. ВЕНОЗНЫЙ ЗАСТОЙ КРОВИ (ВЕНОЗНАЯ ГИПЕРЕМИЯ)

Венозный застой крови (или венозная гиперемия) - увеличение кровенаполнения органа или ткани вследствие нарушения оттока крови в венозную систему.

9.3.1. Причины венозного застоя крови

Венозный застой крови возникает вследствие механических препятствий для оттока крови из микроциркуляторного русла в венозную систему. Это бывает только при условии, когда отток крови по коллатеральным венозным путям недостаточен.

Увеличение сопротивления кровотоку в венах может быть вызвано следующими причинами: 1) тромбозом и эмболией вен, препятствующими оттоку крови (см. выше раздел 9.2.1); 2) повышением давления в крупных венах (например, вследствие правожелудочковой сердечной недостаточности), что приводит к недостаточной артериовенозной разности давлений; 3) сдавлением вен, которое происходит относительно легко ввиду тонкости их стенок и сравнительно низкого внутрисосудистого давления (например, сдавление вен разросшейся опухолью, увеличенной маткой при беременности, рубцом, экссудатом, отеком ткани, спайкой, лигатурой, жгутом).

В венозной системе коллатеральный отток крови происходит сравнительно легко благодаря тому, что она содержит во многих органах большое количество анастомозов. При длительном венозном застое коллатеральные пути венозного оттока могут подвергаться дальнейшему развитию. Например, при сдавлении или сужении просвета воротной вены или при циррозе печени отток венозной крови в нижнюю полую вену происходит по развившимся коллатералям вен в нижней части пищевода, вен брюшной стенки и т.д.

Благодаря быстрому оттоку крови по коллатералям закупорка основных вен часто не сопровождается венозным застоем крови или же он бывает незначительным и держится недолго. Лишь при недостаточном коллатеральном оттоке крови препятствия для кровотока в венах приводят к значительному венозному застою крови.

9.3.2. Микроциркуляция в области венозного застоя крови

Кровяное давление в венах повышается непосредственно перед препятствием кровотоку. Это ведет к уменьшению артериовенозной разности давлений и к замедлению кровотока в мелких артериях, капиллярах и венах. Если отток крови в венозную систему полностью прекращается, то давление перед препятствием возрастает настолько, что достигает диастолического давления в артериях, приносящих кровь в данный орган. В этих случаях кровоток в сосудах останавливается во время диастолы сердца и опять начинается во время каждой систолы. Такое течение крови называется толчкообразным. Если же давление в венах перед препятствием повышается еще больше, превышая диастолическое давление в при-

водящих артериях, то ортоградный ток крови (имеющий нормальное направление) наблюдается только во время систол сердца, а во время диастол из-за извращения градиента давления в сосудах (вблизи вен оно становится выше, чем вблизи артерий) наступает ретроградный, т.е. обратный, ток крови. Такой кровоток в органах называется маятникообразным. Маятникообразное движение крови обычно завершается развитием стаза в сосудах, который называется венозным (застойным).

Повышенное внутрисосудистое давление растягивает сосуды и вызывает их расширение. Больше всего расширяются вены там, где повышение давления наиболее выражено, радиус относительно велик и стенки сравнительно тонки. При венозном застое становятся шире все функционирующие вены, а также раскрываются те венозные сосуды, которые до этого не функционировали. Капилляры также расширяются, преимущественно в венозных отделах, так как степень повышения давления здесь больше и стенка более растяжима, чем вблизи артериол.

Хотя площадь поперечного сечения сосудистого русла органа при венозном застое увеличивается, линейная скорость кровотока падает значительно больше и поэтому объемная скорость кровотока оказывается закономерно уменьшенной. Таким образом, микроциркуляция в органе и кровоснабжение тканей при венозном застое крови ослабляются, несмотря на расширение капиллярного русла и повышение внутрисосудистого давления.

Зависимость разных параметров микроциркуляции при венозном застое крови представлена на рис. 9-4.

9.3.3. Симптомы венозного застоя крови

Симптомы венозного застоя крови зависят главным образом от уменьшения интенсивности кровотока в микроциркуляторном русле, а также от увеличения его кровенаполнения.

Уменьшение объемной скорости кровотока при венозном застое означает, что меньшее количество кислорода и питательных веществ приносится с кровью в орган, а продукты обмена веществ не удаляются полностью. Поэтому ткани испытывают дефицит кровоснабжения и прежде всего кислородную недостаточность, т.е. гипоксию (циркуляторного характера). Это, в свою очередь, ведет к нарушению нормального функционирования тканей. Вследствие уменьшения интенсивности кровотока в органе к нему приносится

Рис. 9-4. Изменения микроциркуляции при венозном застое (по Г.И. Мчедлишвили)

меньше тепла, чем обычно. В поверхностно расположенных органах это вызывает нарушение баланса между количеством тепла, приносимого с кровью и отдаваемого в окружающую среду. Поэтому температура их при венозном застое понижается. Во внутренних же органах этого не происходит, так как теплоотдача из них в окружающую среду отсутствует.

Повышение кровяного давления внутри капилляров обусловливает усиление фильтрации жидкости через стенки капилляров в тканевые щели и уменьшение ее резорбции обратно в кровеносную систему, что означает усиление транссудации. Проницаемость стенок капилляров увеличивается, также способствуя усиленной транссудации жидкости в тканевые щели. Механические свойства соединительной ткани при этом изменяются таким образом, что ее растяжимость растет, а упругость падает. В результате этого вышедший из капилляров транссудат легко растягивает щели и, накапливаясь в них в значительном количестве, вызывает отек тканей. Объем органа при венозном застое увеличивается как за счет увеличения его кровенаполнения, так и вследствие образования

отека. Непосредственным результатом венозной гиперемии, кроме отеков, может быть развитие водянок (например, асцита).

Так как кровоток в капиллярах при венозном застое резко замедляется, кислород крови максимально используется тканями, артериоло-венулярная разница по кислороду увеличивается, и большая часть гемоглобина крови оказывается восстановленной. Поэтому орган или ткань приобретает синюшный оттенок (цианоз), так как темно-вишневый цвет восстановленного гемоглобина, просвечивая через тонкий слой эпидермиса, приобретает голубоватый оттенок.

Венозная гиперемия приводит к развитию гипоксии тканей с последующим некрозом морфологических элементов ткани. При длительной венозной гиперемии высока вероятность замещения морфологических элементов органа или ткани соединительной тканью. При заболеваниях печени хроническая венозная гиперемия формирует картину «мускатной» печени. Хроническая венозная гиперемия легких ведет к их бурой индурации. Венозная гиперемия селезенки при портальной гипертензии вследствие цирроза печени проявляется спленомегалией.

9.4. СТАЗ В МИКРОСОСУДАХ

Стаз - это остановка тока крови в сосудах органа или ткани.

9.4.1. Виды стаза и причины их развития

Все разновидности стаза подразделяют на первичные и вторичные. Первичный (истинный капиллярный) стаз обусловлен первичной агрегацией эритроцитов. Вторичный стаз подразделяется на ишемический и венозный (застойный). Ишемический стаз является исходом тяжелой ишемии, при которой снижается приток артериальной крови в ткань, снижается артериовенозная разница давлений, резко замедляется скорость кровотока по микрососудам, отмечается агрегация форменных элементов крови и остановка крови в сосудах. Венозный стаз является исходом венозной гиперемии, при которой снижается отток венозной крови, снижается артериовенозная разница давлений, отмечается застой крови в микрососудах, повышается вязкость крови, отмечается агрегация форменных элементов крови, и это обеспечивает остановку тока крови.

9.4.2. Нарушения реологических свойств крови, вызывающие стаз в микрососудах

Реологические свойства крови как неоднородной жидкости имеют особо важное значение при ее течении по микрососудам, просвет которых сопоставим с величиной ее форменных элементов. При движении в просвете капилляров и прилегающих к ним мельчайших артерий и вен эритроциты и лейкоциты меняют свою форму - изгибаются, вытягиваются в длину и т. д. Нормальное течение крови по микрососудам возможно только при условиях, если: а) форменные элементы могут легко деформироваться; б) они не склеиваются между собой и не образуют агрегаты, которые могли бы затруднять кровоток и даже полностью закупоривать просвет микрососудов; концентрация форменных элементов крови не является избыточной. Все эти свойства важны прежде всего для эритроцитов, так как число их в крови человека примерно в тысячу раз превышает количество лейкоцитов.

Наиболее доступным и широко используемым в клинике способом определения реологических свойств крови у больных является ее вискозиметрия. Однако условия движения крови в любых известных в настоящее время вискозиметрах значительно отличаются от тех, которые имеют место в микроциркуляторном русле in vivo. Ввиду этого данные, получаемые при вискозиметрии, отражают лишь некоторые общие реологические свойства крови, которые могут способствовать либо препятствовать ее течению по микрососудам в организме. Ту вязкость крови, которую выявляют в вискозиметрах, называют относительной вязкостью, сравнивая ее с вязкостью воды, которую принимают за единицу.

Нарушения реологических свойств крови в микрососудах связаны главным образом с изменениями свойств эритроцитов крови. Такие изменения могут возникать не только во всей сосудистой системе организма, но и местно в каких-либо органах или их частях. Например, это всегда имеет место в очаге любого воспаления. Ниже перечислены основные факторы, определяющие нарушения реологических свойств крови в микрососудах организма.

Усиленная внутрисосудистая агрегация эритроцитов, вызывающая стаз крови в микрососудах. Способность эритроцитов к агрегации, т.е. к слипанию и образованию «монетных столбиков», которые затем склеиваются между собой, является их нормальным свойством. Однако агрегация может значительно усиливаться под вли-

янием разных факторов, изменяющих как поверхностные свойства эритроцитов, так и среду, окружающую их. При усилении агрегации кровь превращается из взвеси эритроцитов с высокой текучестью в сетчатую суспензию, полностью лишенную этой способности. Агрегация эритроцитов нарушает нормальную структуру кровотока в микрососудах и является наиболее важным фактором, изменяющим нормальные реологические свойства крови.

При прямых наблюдениях кровотока в микрососудах иногда можно видеть внутрисосудистую агрегацию эритроцитов, названную «зернистым током крови». При усилении внутрисосудистой агрегации эритроцитов во всей кровеносной системе агрегаты могут закупоривать мельчайшие прекапиллярные артериолы, вызывая нарушения кровотока в соответствующих капиллярах. Усиленная агрегация эритроцитов может возникать также местно, в микрососудах, и нарушать микрореологические свойства текущей в них крови до такой степени, что кровоток в капиллярах замедляется и останавливается полностью - возникает стаз, несмотря на то что артериовенозная разность кровяного давления на протяжении этих микрососудов сохранена. При этом в капиллярах, мелких артериях и венах накапливаются эритроциты, которые тесно соприкасаются друг с другом, так что границы их перестают быть видимыми (возникает «гомогенизация крови»). Однако вначале при стазе ни гемолиза, ни свертывания крови не происходит. В течение некоторого времени стаз обратим - движение эритроцитов может возобновиться, а проходимость микрососудов - восстановиться.

На возникновение внутрикапиллярной агрегации эритроцитов оказывают влияние следующие факторы:

1. Повреждение стенок капилляров, вызывающее усиление фильтрации жидкости, электролитов и низкомолекулярных белков (альбуминов) в окружающие ткани. Вследствие этого в плазме крови увеличивается концентрация высокомолекулярных белков - глобулинов, фибриногена и др., что, в свою очередь, является важнейшим фактором усиления агрегации эритроцитов. Предполагается, что абсорбция этих белков на мембранах эритроцитов уменьшает их поверхностный потенциал и способствует их агрегации.

2. Химические повреждающие агенты непосредственно действуют на эритроциты, вызывают изменение физико-химических свойств мембран, изменение поверхностного потенциала мембран и способствуют агрегации эритроцитов.

3. Скорость кровотока в капиллярах, обусловленная функциональным состоянием приводящих артерий. Констрикция этих артерий вызывает замедление кровотока в капиллярах (ишемию), способствуя агрегации эритроцитов и развитию стаза в капиллярах. При дилатации приводящих артерий и ускорении кровотока в капиллярах (артериальная гиперемия) внутрикапиллярная агрегация эритроцитов и стаз развиваются труднее и устраняются значительно легче.

Стаз, обусловленный указанными тремя факторами, называется истинным капиллярным (первичным). Он развивается при патологии стенки капилляра, внутрисосудистых и внесосудистых нарушениях на уровне капилляра.

Нарушение деформируемости эритроцитов. Эритроциты изменяют свою форму при течении крови не только по капиллярам, но и в более широких сосудах - артериях и венах, где они бывают обычно вытянутыми в длину. Способность деформироваться (деформируемость) у эритроцитов связана главным образом со свойствами их наружной мембраны, а также с высокой текучестью их содержимого. В потоке крови происходят вращательные движения мембраны вокруг содержимого эритроцитов, которое также перемещается.

Деформируемость эритроцитов чрезвычайно изменчива при естественных условиях. Она постепенно уменьшается с возрастом эритроцитов, в результате чего возможно их повреждение при прохождении по наиболее узким (диаметром 3 мкм) капиллярам ретикулоэндотелиальной системы. Предполагается, что благодаря этому происходит устранение старых эритроцитов из кровеносной системы.

Мембраны эритроцитов становятся более жесткими под влиянием различных патогенных факторов, например при дефиците АТФ, гиперосмолярности и т.д. В результате реологические свойства крови изменяются таким образом, что ее течение по микрососудам затрудняется. Это имеет место при заболеваниях сердца, несахарном диабете, раке, стрессах и др., при которых текучесть крови в микрососудах оказывается значительно пониженной.

Нарушение структуры потока крови в микрососудах. В просвете сосудов поток крови характеризуется сложной структурой, связанной: а) с неравномерным распределением неагрегированных эритроцитов в потоке крови по поперечнику сосуда; б) со своеобразной ориентацией эритроцитов в потоке, которая может меняться

от продольной до поперечной; в) с траекторией движения эритроцитов внутри сосудистого просвета. Все это может оказывать значительное влияние на текучесть крови в сосудах.

С точки зрения нарушений реологических свойств крови особое значение имеют изменения структуры потока крови в микрососудах диаметром 15-80 мкм, т.е. несколько более широких, чем капилляры. Так, при первичном замедлении кровотока продольная ориентация эритроцитов часто сменяется на поперечную, траектория движения эритроцитов становится хаотичной. Все это значительно увеличивает сопротивление кровотоку, вызывает еще большее замедление течения крови в капиллярах, усиливает агрегацию эритроцитов, нарушает микроциркуляцию и повышает вероятность стаза.

Изменение концентрации эритроцитов в циркулирующей крови. Содержание эритроцитов в крови считается важным фактором, влияющим на ее реологические свойства, так как при вискозиметрии обнаруживается прямая зависимость между концентрацией эритроцитов в крови и ее относительной вязкостью. Объемная концентрация эритроцитов в крови (гематокрит) может меняться в значительной степени как во всей кровеносной системе, так и местно. В микроциркуляторном русле тех или иных органов и их отдельных частей содержание эритроцитов зависит от интенсивности кровотока. Несомненно, что при значительном увеличении концентрации эритроцитов в кровеносной системе реологические свойства крови заметно меняются, вязкость крови возрастает и усиливается агрегация эритроцитов, что повышает вероятность стаза.

9.4.3. Последствия стаза крови в микрососудах

При быстром устранении причины стаза ток крови в микрососудах восстанавливается и каких-либо существенных изменений в тканях не развивается. Длительный стойкий стаз может оказаться необратимым. Это приводит к дистрофическим изменениям в тканях, вызывает некроз окружающих тканей (инфаркт). Патогенное значение стаза крови в капиллярах в значительной степени зависит от того, в каком органе он возник. Так, особенно опасен стаз крови в микрососудах головного мозга, сердца и почек.

9.5. ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ

Нейроны являются наиболее чувствительными структурными элементами организма к расстройству кровоснабжения и к гипоксии. Поэтому в процессе эволюции животного мира развилась совершенная система регулирования мозгового кровообращения. Благодаря ее функционированию в физиологических условиях величина кровотока всегда соответствует интенсивности обмена веществ в каждом участке мозговой ткани. При патологии та же система регулирования обеспечивает быструю компенсацию различных циркуляторных нарушений в головном мозге. У каждого больного важно идентифицировать чисто патологические и компенсаторные изменения мозгового кровообращения, так как без этого невозможно правильно подобрать лечебные воздействия, которые устраняли бы нарушения и способствовали их компенсации в организме.

Несмотря на совершенную систему регулирования мозгового кровообращения, патогенные влияния на организм (в том числе стрессорные факторы) столь часты и интенсивны в современных условиях, что, согласно статистике, различные расстройства мозгового кровообращения оказались наиболее частыми причинами (или способствующими факторами) нарушения функций головного мозга. При этом выраженные морфологические изменения в сосудах головного мозга (например, склеротические изменения сосудистых стенок, тромбоз сосудов и т.д.) обнаруживаются не во всех случаях. Это означает, что нарушения мозгового кровообращения имеют функциональный характер, например возникают вследствие спазма мозговых артерий или же резкого повышения или понижения общего артериального давления, и могут приводить к выраженным нарушениям функции головного мозга и нередко к смерти.

Нарушения мозгового кровообращения могут быть связаны:

1) с патологическими изменениями системного кровообращения (главным образом с артериальной гиперили гипотензией);

2) с патологическими изменениями в сосудистой системе самого мозга. Это могут быть первичные изменения просвета мозговых сосудов, главным образом артерий (вызываемые, например, их спазмом или тромбозом), либо изменения реологических свойств крови (связанные, например, с усиленной внутрисосудистой агре-

Рис. 9-5. Наиболее частые причины нарушений мозгового кровообраще-

гацией эритроцитов, вызывающей развитие стаза в капиллярах) (рис. 9-5).

9.5.1. Нарушения и компенсация мозгового кровообращения при артериальной гипер- и гипотензии

Изменения уровня общего артериального давления при гипер- и гипотензии, естественно, не могут не отражаться на кровотоке в мозговых сосудах (как и других органов), поскольку артериовенозная разница давлений является одним из основных факторов, определяющих интенсивность периферического кровотока. При этом роль изменений артериального давления более значительна, чем венозного. В патологических условиях изменения общего артериального давления могут быть весьма значительны - в пределах от 0 до 300 мм рт.ст. (общее венозное давление же может изменяться только от 0 до 20 мм рт.ст.) и наблюдаются значительно чаще. Артериальная гипер- и гипотензия вызывает соответствующие изменения уровня кровяного давления и величины кровотока

во всей сосудистой системе головного мозга, приводя к тяжелым нарушениям мозгового кровообращения. Так, наступающее вследствие артериальной гипертензии повышение кровяного давления в сосудах мозга может вызвать: а) кровоизлияния в ткань мозга (особенно если стенки его сосудов патологически изменены); б) отек мозга (особенно при соответствующих изменениях гематоэнцефалического барьера и ткани мозга) и в) спазмы мозговых артерий (если имеют место соответствующие изменения их стенок). При артериальной гипотензии понижение артериовенозной разницы давлений может приводить к ослаблению мозгового кровотока и к дефициту кровоснабжения ткани мозга, нарушая ее обмен веществ вплоть до гибели структурных элементов.

В процессе эволюции сформировался механизм регулирования мозгового кровообращения, который в значительной степени компенсирует все эти нарушения, обеспечивая постоянство кровяного давления и кровотока в сосудах головного мозга независимо от изменений общего артериального давления (рис. 9-6). Пределы такого регулирования могут быть неодинаковыми у разных людей

Рис. 9-6. Регуляция мозгового кровообращения, обеспечивающая компенсацию кровяного давления и кровотока в сосудистой системе головного мозга при изменениях уровня общего артериального давления (гипо- и гипертензии)

и даже у одного и того же человека и зависят от его состояния (физиологического или патологического). Благодаря регулированию у многих гипер- и гипотоников мозговой кровоток остается в пределах нормы (50 мл крови на 100 г ткани мозга в 1 мин) и отсутствуют какие-либо симптомы изменений кровяного давления и кровотока в головном мозгу.

Исходя из общих законов гемодинамики, физиологический механизм регулирования мозгового кровообращения обусловлен изменениями сопротивления в сосудистой системе головного мозга (цереброваскулярного сопротивления), т.е. активной констрикцией мозговых сосудов при повышении общего артериального давления и их дилатацией при понижении. Исследования последних десятилетий выяснили некоторые звенья физиологического механизма этого регулирования.

Так, известными стали сосудистые эффекторы, или «сосудистые механизмы» регулирования мозгового кровообращения. Оказалось, что активные изменения цереброваскулярного сопротивления осуществляются прежде всего магистральными артериями мозга - внутренними сонными и позвоночными. Однако когда реакции этих сосудов недостаточны, чтобы поддержать постоянство мозгового кровотока (а вследствие этого микроциркуляция становится неадекватной метаболическим потребностям мозговой ткани), в регулирование включаются реакции более мелких артерий мозга, в частности пиальных, расположенных на поверхности больших полушарий (рис. 9-7).

Выяснение конкретных эффекторов этого регулирования позволило проанализировать физиологический механизм вазомоторных реакций мозговых сосудов. Если первоначально предполагали, что вазоконстрикция в мозгу при гипертензии и вазодилатация при гипотензии связаны только с миогенными реакциями самих мозговых артерий, то сейчас накапливается все больше экспериментальных доказательств, что эти сосудистые реакции осуществляются нейрогенно, т.е. обусловлены рефлекторным вазомоторным механизмом, который приводится в действие изменениями кровяного давления в соответствующих отделах артериальной системы головного мозга.

Рис. 9-7. Сосудистые эффекторы регулирования мозгового кровообращения - системы пиальных и магистральных артерий: 1 - пиальные артерии, посредством которых регулируется величина микроциркуляции (соответствующая интенсивности обмена веществ) в небольших участках мозговой ткани; 2 - магистральные артерии мозга (внутренние сонные и позвоночные), посредством которых поддерживается постоянство кровяного давления, кровотока и объема крови в кровеносной системе головного мозга в нормальных и патологических условиях

9.5.2. Нарушения и компенсация мозгового кровообращения при венозном застое крови

Затруднение оттока крови из сосудистой системы головного мозга, вызывающее в нем венозный застой крови (см. раздел 9.3), весьма опасно для мозга, находящегося в герметически замкнутой черепной коробке. В ней помещаются две несжимаемые жидкости - кровь и цереброспинальная жидкость, а также ткань мозга (состоящая на 80% из воды, поэтому малосжимаемая). Увеличение объема крови в сосудах мозга (которое неизбежно сопутствует венозному застою крови) вызывает повышение внутричерепного

Рис. 9-8. Веновазомоторный рефлекс с механорецепторов венозной системы, регулирующих постоянство объема крови внутри черепа, на магистральные артерии мозга

давления и сдавление мозга, нарушая, в свою очередь, его кровоснабжение и функцию.

Вполне естественно, что в процессе эволюции животного мира развился весьма совершенный регулирующий механизм, устраняющий такие нарушения. Экспериментами было доказано, что сосудистыми эффекторами этого механизма являются магистральные артерии мозга, которые активно суживаются, как только затрудняется отток венозной крови из черепа. Данньгй регулирующий механизм работает посредством рефлекса с механорецепторов венозной системы головного мозга (при увеличении в ней объема крови и кровяного давления) на его магистральные артерии (рис. 9-8). При этом наступает их констрикция, ограничивающая приток крови в мозг, и венозный застой в его сосудистой системе, который может даже полностью устраняться.

9.5.3. Ишемия головного мозга и ее компенсация

Ишемия в головном мозгу, так же как в других органах, возникает вследствие сужения или закупорки просвета приводящих артерий (см. раздел 9.2). В естественных условиях это может зависеть от тромбов или эмболов в сосудистом просвете, стенозирующего атеросклероза сосудистых стенок или патологической вазоконстрикции, т.е. спазма соответствующих артерий.

Ангиоспазм в головном мозгу имеет типичную локализацию. Он развивается главным образом в магистральных артериях и других крупных артериальных стволах в области основания мозга. Это те артерии, для которых при нормальном функционировании (во время регулирования мозгового кровотока) более типичны констрикторные реакции. Спазм более мелких ветвлений пиальных

артерий развивается реже, поскольку наиболее типичными для них являются дилататорные реакции при регулировании микроциркуляции в коре мозга.

При сужении или закупорке отдельных артериальных ветвей головного мозга ишемия развивается в нем не всегда или же наблюдается в небольших участках ткани, что объясняется наличием в артериальной системе мозга многочисленных анастомозов, связывающих между собой как магистральные артерии мозга (две внутренние сонные и две позвоночные) в области виллизиева круга, так и крупные, а также мелкие пиальные артерии, расположенные на поверхности мозга. Благодаря анастомозам быстро возникает коллатеральный приток крови в бассейн выключенной артерии. Этому способствует постоянно наблюдаемая при таких условиях дилатация ветвлений пиальных артерий, расположенных к периферии от места сужения (или закупорки) кровеносных сосудов. Такие сосудистые реакции служат ни чем иным, как проявлением регулирования микроциркуляции в мозговой ткани, обеспечивающей ее адекватное кровоснабжение.

При данных условиях вазодилатация бывает всегда наиболее выраженной в области мелких пиальных артерий, а также их активных сегментов - сфинктеров ответвлений и прекортикальных артерий (рис. 9-9). Физиологический механизм, обусловливающий эту компенсаторную вазодилатацию, еще недостаточно изучен. Раньше предполагали, что указанные сосудистые реакции, регулирующие кровоснабжение ткани, возникают вследствие диффузии

Рис. 9-9. Система пиальных артерий на поверхности головного мозга с активными сосудистыми сегментами: 1 - крупные пиальные артерии; 2 - мелкие пиальные артерии; 3 - прекортикальные артерии; 4 - сфинктеры ответвлений

дилататорных метаболитов (ионов водорода и калия, аденозина) со стороны тканевых элементов мозга, испытывающих дефицит кровоснабжения, к стенкам снабжающих их кровью сосудов. Однако теперь имеется много экспериментальных доказательств того, что компенсаторная вазодилатация в большой степени зависит от нейрогенного механизма.

Изменения микроциркуляции в головном мозгу при ишемии в принципе те же, что и в других органах тела (см. раздел 9.2.2).

9.5.4. Нарушения микроциркуляции, вызванные изменениями реологических свойств крови

Изменение текучести (вязкостных свойств) крови является одной из основных причин нарушений микроциркуляции, а следовательно, и адекватного кровоснабжения мозговой ткани. Такие изменения крови влияют, прежде всего, на ее течение по микроциркуляторному руслу, особенно по капиллярам, способствуя замедлению в них кровотока вплоть до полной остановки. Факторами, вызывающими нарушения реологических свойств и, следовательно, текучести крови в микрососудах, являются:

1. Усиленная внутрисосудистая агрегация эритроцитов, которая даже при сохраненном градиенте давлений на протяжении микрососудов вызывает в них замедление кровотока разной степени вплоть до его полной остановки.

2. Нарушение деформируемости эритроцитов, зависящее главным образом от изменений механических свойств (податливости) их наружных мембран, имеет большое значение для текучести крови по капиллярам головного мозга. Диаметр просвета капилляров здесь меньше, чем поперечник эритроцитов, и потому при нормальном течении крови по капиллярам эритроциты перемещаются в них только в сильно деформированном (вытянутом в длину) состоянии. Деформируемость эритроцитов в крови может нарушаться под влиянием различных патогенных воздействий, создавая значительное препятствие для нормального течения крови по капиллярам мозга и нарушая кровоток.

3. Концентрация эритроцитов в крови (местный гематокрит), которая также может отражаться на текучести крови по микрососудам. Однако это влияние здесь, по-видимому, меньше выражено, чем при исследовании в вискозиметрах крови, выпущенной из сосудов. В условиях организма концентрация эритроцитов в крови

может влиять на ее текучесть по микрососудам косвенно, поскольку увеличение количества эритроцитов способствует образованию их агрегатов.

4. Структура потока крови (ориентация и траектория движения эритроцитов в сосудистом просвете и т.д.), являющаяся важным фактором, который определяет нормальную текучесть крови по микрососудам (особенно по мелким артериальным ветвлениям с диаметром меньше 100 мкм). При первичном замедлении кровотока (например, при ишемии) структура потока крови меняется таким образом, что текучесть ее снижается, способствуя еще большему замедлению кровотока во всем микроциркуляторном русле и вызывая нарушение кровоснабжения тканей.

Описанные изменения реологических свойств крови (рис. 9-10) могут происходить во всей кровеносной системе, нарушая микроциркуляцию в организме в целом. Однако они могут возникать также местно, например, только в кровеносных сосудах головного мозга (во всем мозге или в его отдельных частях), нарушая в них микроциркуляцию и функцию окружающих нейронных элементов.

Рис. 9-10. Факторы, определяющие микрореологические свойства крови в капиллярах и прилегающих к ним мелких артериях и венах

9.5.5. Артериальная гиперемия в головном мозге

Изменения кровотока типа артериальной гиперемии (см. раздел 9.1) возникают в головном мозге при резком расширении ветвлений пиальных артерий. Эта вазодилатация возникает обычно при недостаточности кровоснабжения мозговой ткани, например, при повышении интенсивности обмена веществ (особенно в случаях появления судорожной активности, в частности в эпилептических очагах), являясь аналогом функциональной гиперемии в других органах. Расширение пиальных артерий может иметь место также при резком понижении общего артериального давления, при закупорке крупных ветвей мозговых артерий и становится еще более выраженным в процессе восстановления кровотока в ткани мозга после ее ишемии, когда развивается постишемическая (или реактивная) гиперемия.

Артериальная гиперемия в головном мозгу, сопровождающаяся увеличением объема крови в его сосудах (особенно если гиперемия развилась в значительной части мозга), может приводить к повышению внутричерепного давления. В связи с этим наступает компенсаторное сужение системы магистральных артерий - проявление регулирования постоянства объема крови внутри черепа.

При артериальной гиперемии интенсивность кровотока в сосудистой системе мозга может намного превышать метаболические потребности его тканевых элементов, что бывает особенно выражено после тяжелой ишемии или травмы мозга, когда его нейронные элементы повреждены и обмен веществ в них понижается. В этих случаях кислород, приносимый кровью, не усваивается мозговой тканью, и потому в венах мозга течет артериализированная (красная) кровь. Такое явление давно заметили нейрохирурги, назвав его избыточной перфузией мозга с типичным признаком - красной венозной кровью. Это показатель тяжелого и даже необратимого состояния головного мозга, которое часто заканчивается смертью пациента.

9.5.6. Отек головного мозга

Развитие отека головного мозга тесно связано с нарушениями его кровообращения (рис. 9-11). С одной стороны, циркуляторные изменения в мозгу могут быть непосредственными причинами отека. Это имеет место при резком повышении кровяного

Рис. 9-11. Патогенная и компенсаторная роль циркуляторных факторов в развитии отека головного мозга

давления в мозговых сосудах вследствие значительного подъема общего артериального давления (отек называют гипертензивным). Ишемия головного мозга также может быть причиной отека, называемого ишемическим. Такой отек развивается вследствие того, что при ишемии повреждаются структурные элементы мозговой ткани, в которых начинаются процессы усиленного катаболизма (в частности, распад крупных молекул белка) и появляется большое количество осмотически активных фрагментов макромолекул ткани. Повышение осмотического давления в мозговой ткани, в свою очередь, обусловливает усиленный переход воды с растворенными в ней электролитами из кровеносных сосудов в межклеточные пространства, а из них внутрь тканевых элементов мозга, которые при этом резко набухают.

С другой стороны, изменения микроциркуляции в мозгу могут сильно влиять на развитие отека любой этиологии. Решающую роль играют изменения уровня кровяного давления в микрососудах мозга, во многом определяющие степень фильтрации воды с электролитами из крови в тканевые пространства мозга. Поэтому возникновение артериальной гиперемии или венозного застоя крови в мозгу всегда способствует развитию отека, например, после черепно-мозговой травмы. Большое значение также имеет состояние гематоэнцефалического барьера, так как от него зависит переход в тканевые пространства из крови не только осмотически активных частиц, но и других компонентов плазмы крови, как, например, жирных кислот и т. д., которые, в свою очередь, повреждают ткань мозга и способствуют накоплению в ней избыточного количества воды.

Используемые для лечения отека осмотически активные вещества, повышающие осмолярность крови, часто оказываются малоэффективными с точки зрения предотвращения отека головного мозга. Циркулируя в крови, они способствуют резорбции воды главным образом из неповрежденной ткани мозга. Что же касается тех частей мозга, в которых отек уже развился, дегидратация их нередко не происходит из-за того, что, во-первых, в поврежденной ткани имеются условия, способствующие задержке жидкости (высокая осмолярность, набухание клеточных элементов). Во-вторых, вследствие нарушения гематоэнцефалического барьера осмотически активное вещество, введенное с терапевтической целью в кровь, само переходит в ткань мозга и еще более способствует за-

держке там воды, т.е. вызывает усиление отека мозга, вместо того чтобы его ослабить.

9.5.7. Кровоизлияния в мозг

Кровь изливается из сосудов в ткань мозга при двух условиях (рис. 9-12). Чаще это происходит при разрыве стенок мозговых артерий, наступающем обычно при значительном повышении внутрисосудистого давления (в случаях резкого подъема общего артериального давления и недостаточной его компенсации посредством констрикции соответствующих мозговых артерий). Такие кровоизлияния в мозг, как правило, возникают во время гипертонических кризов, когда общее артериальное давление повышается внезапно, и компенсаторные механизмы артериальной системы мозга не срабатывают. Другим фактором, способствующим кровоизлиянию в головной мозг при этих условиях, являются значительные изменения структуры стенок сосудов, которые не выдерживают растягивающей силы повышенного кровяного давления (например, в области артериальных аневризм).

Поскольку кровяное давление в артериях мозга значительно превышает уровень внутричерепного давления, при таких кровоизлияниях в мозг в герметически замкнутом черепе повышается

Рис. 9-12. Причины и последствия кровоизлияний в головной мозг

давление, и деформируются окружающие очаг кровоизлияния структуры мозга. Кроме того, излившаяся в ткань мозга кровь повреждает его структурные элементы содержащимися в ней токсичными химическими ингредиентами. В конечном счете развивается отек мозга. Поскольку все это возникает подчас внезапно и сопровождается тяжелым состоянием больного с потерей сознания и т.д., такие кровоизлияния в мозг получили название инсульта (апоплексического удара) .

Возможен и другой вид кровоизлияния в ткань мозга - без морфологически обнаруживаемого разрыва стенок мозговых сосудов. Такие кровоизлияния происходят из микрососудов при значительных повреждениях гематоэнцефалического барьера, когда в ткань мозга начинают переходить не только составные части плазмы крови, но и ее форменные элементы. В отличие от инсульта этот процесс развивается сравнительно медленно, но также сопровождается повреждением структурных элементов мозговой ткани и развитием отека мозга.

Прогноз состояния пациента в значительной степени зависит от того, насколько обширны кровоизлияние и вызываемые им последствия в виде отека и повреждения структурных элементов мозга, а также от локализации кровоизлияния в головном мозгу. Если повреждение ткани мозга оказывается необратимым, то единственной надеждой для врача и больного остается компенсация функций мозга за счет его неповрежденных частей.



error: Контент защищен !!